IDEAS home Printed from
   My bibliography  Save this article

An empirical process central limit theorem for dependent non-identically distributed random variables


  • Andrews, Donald W. K.


This paper establishes a central limit theorem (CLT) for empirical processes indexed by smooth functions. The underlying random variables may be temporally dependent and non-identically distributed. In particular, the CLT holds for near epoch dependent (i.e., functions of mixing processes) triangular arrays, which include strong mixing arrays, among others. The results apply to classes of functions that have series expansions. The proof of the CLT is particularly simple; no chaining argument is required. The results can be used to establish the asymptotic normality of semiparametric estimators in time series contexts. An example is provided.

Suggested Citation

  • Andrews, Donald W. K., 1991. "An empirical process central limit theorem for dependent non-identically distributed random variables," Journal of Multivariate Analysis, Elsevier, vol. 38(2), pages 187-203, August.
  • Handle: RePEc:eee:jmvana:v:38:y:1991:i:2:p:187-203

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
    2. Pollard, David, 1985. "New Ways to Prove Central Limit Theorems," Econometric Theory, Cambridge University Press, vol. 1(03), pages 295-313, December.
    3. Andrews, Donald W. K., 1988. "Chi-square diagnostic tests for econometric models : Introduction and applications," Journal of Econometrics, Elsevier, vol. 37(1), pages 135-156, January.
    4. Andrews, Donald W K, 1988. "Chi-Square Diagnostic Tests for Econometric Models: Theory," Econometrica, Econometric Society, vol. 56(6), pages 1419-1453, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Donald W.K. Andrews, 1992. "An Introduction to Econometric Applications of Functional Limit Theory for Dependent Random Variables," Cowles Foundation Discussion Papers 1020, Cowles Foundation for Research in Economics, Yale University.
    2. Hansen, Bruce E., 1996. "Stochastic Equicontinuity for Unbounded Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 12(02), pages 347-359, June.
    3. Arcones, Miguel A., 1996. "Weak convergence of stochastic processes indexed by smooth functions," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 115-138, March.
    4. Hajivassiliou, 1993. "Macroeconomic Shocks in an Aggregative Disequilibrium Model," Cowles Foundation Discussion Papers 1063, Cowles Foundation for Research in Economics, Yale University.
    5. Sakata, Shinichi & White, Halbert, 2001. "S-estimation of nonlinear regression models with dependent and heterogeneous observations," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 5-72, July.
    6. Donald W.K. Andrews & David Pollard, 1990. "A Functional Central Limit Theorem for Strong Mixing Stochastic Processes," Cowles Foundation Discussion Papers 951, Cowles Foundation for Research in Economics, Yale University.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:38:y:1991:i:2:p:187-203. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.