IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i4p768-780.html
   My bibliography  Save this article

High dimensional data analysis using multivariate generalized spatial quantiles

Author

Listed:
  • Mukhopadhyay, Nitai D.
  • Chatterjee, Snigdhansu

Abstract

High dimensional data routinely arises in image analysis, genetic experiments, network analysis, and various other research areas. Many such datasets do not correspond to well-studied probability distributions, and in several applications the data-cloud prominently displays non-symmetric and non-convex shape features. We propose using spatial quantiles and their generalizations, in particular, the projection quantile, for describing, analyzing and conducting inference with multivariate data. Minimal assumptions are made about the nature and shape characteristics of the underlying probability distribution, and we do not require the sample size to be as high as the data-dimension. We present theoretical properties of the generalized spatial quantiles, and an algorithm to compute them quickly. Our quantiles may be used to obtain multidimensional confidence or credible regions that are not required to conform to a pre-determined shape. We also propose a new notion of multidimensional order statistics, which may be used to obtain multidimensional outliers. Many of the features revealed using a generalized spatial quantile-based analysis would be missed if the data was shoehorned into a well-known probabilistic configuration.

Suggested Citation

  • Mukhopadhyay, Nitai D. & Chatterjee, Snigdhansu, 2011. "High dimensional data analysis using multivariate generalized spatial quantiles," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 768-780, April.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:4:p:768-780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00242-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Biman Chakraborty, 2001. "On Affine Equivariant Multivariate Quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 380-403, June.
    3. Chakraborty, Biman & Chaudhuri, Probal, 1999. "A note on the robustness of multivariate medians," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 269-276, November.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:4:p:768-780. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.