IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v27y2013icp1-7.html
   My bibliography  Save this article

On the optimization of legislative periods — Similarities to the optimization of rotation periods

Author

Listed:
  • Kaiser, Robert
  • Bösch, Matthias
  • Moog, Martin

Abstract

The optimal length of legislative periods has been debated extensively throughout history. This study examines the applicability of models known from forestry and forest economics for optimizing rotation periods (Faustmann formula) and deciding whether a forest stand has reached maturity (Pressler's ‘indicator percent’) to the field of politics. After drawing possible analogies between optimizing rotation periods (or investment cycles) and optimizing election periods it is investigated whether empirical evidence exists for the alleged analogies in European democracies.

Suggested Citation

  • Kaiser, Robert & Bösch, Matthias & Moog, Martin, 2013. "On the optimization of legislative periods — Similarities to the optimization of rotation periods," Forest Policy and Economics, Elsevier, vol. 27(C), pages 1-7.
  • Handle: RePEc:eee:forpol:v:27:y:2013:i:c:p:1-7
    DOI: 10.1016/j.forpol.2012.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934112002432
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    2. Gong, Peichen & Löfgren, Karl-Gustaf, 2010. "Did Pressler fully understand how to use the indicator per cent?," Journal of Forest Economics, Elsevier, vol. 16(3), pages 195-203, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bösch, Matthias & Elsasser, Peter & Rock, Joachim & Rüter, Sebastian & Weimar, Holger & Dieter, Matthias, 2017. "Costs and carbon sequestration potential of alternative forest management measures in Germany," Forest Policy and Economics, Elsevier, vol. 78(C), pages 88-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schou, Erik & Jacobsen, Jette Bredahl & Kristensen, Kristian Løkke, 2012. "An economic evaluation of strategies for transforming even-aged into near-natural forestry in a conifer-dominated forest in Denmark," Forest Policy and Economics, Elsevier, vol. 20(C), pages 89-98.
    2. Caparros, Alejandro & Cerda, Emilio & Ovando, P. & Campos, Pablo, 2007. "Carbon Sequestration with Reforestations and Biodiversity-Scenic Values," Climate Change Modelling and Policy Working Papers 9323, Fondazione Eni Enrico Mattei (FEEM).
    3. Gopalakrishnan, Sathya & Smith, Martin D. & Slott, Jordan M. & Murray, A. Brad, 2011. "The value of disappearing beaches: A hedonic pricing model with endogenous beach width," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 297-310, May.
    4. Stenger, Anne & Harou, Patrice & Navrud, Ståle, 2009. "Valuing environmental goods and services derived from the forests," Journal of Forest Economics, Elsevier, vol. 15(1-2), pages 1-14, January.
    5. Jens Abildtrup & Jacques-Alexandre Laye & Maximilien Laye & Anne Stenger, 2012. "Irreversibility and Uncertainty in Multifunctional Forest Management Allocation," Post-Print hal-01072290, HAL.
    6. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    7. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    8. Robert Deacon & Charles Kolstad & Allen Kneese & David Brookshire & David Scrogin & Anthony Fisher & Michael Ward & Kerry Smith & James Wilen, 1998. "Research Trends and Opportunities in Environmental and Natural Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 383-397, April.
    9. Khanal, Puskar N. & Grebner, Donald L. & Munn, Ian A. & Grado, Stephen C. & Grala, Robert K. & Henderson, James E., 2017. "Evaluating non-industrial private forest landowner willingness to manage for forest carbon sequestration in the southern United States," Forest Policy and Economics, Elsevier, vol. 75(C), pages 112-119.
    10. Eli Fenichel & Timothy Richards & David Shanafelt, 2014. "The Control of Invasive Species on Private Property with Neighbor-to-Neighbor Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 231-255, October.
    11. Dwivedi, Puneet & Bailis, Robert & Stainback, Andrew & Carter, Douglas R., 2012. "Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South," Ecological Economics, Elsevier, vol. 78(C), pages 63-69.
    12. Warziniack, Travis & Sims, Charles & Haas, Jessica, 2019. "Fire and the joint production of ecosystem services: A spatial-dynamic optimization approach," Forest Policy and Economics, Elsevier, vol. 107(C), pages 1-1.
    13. Morag F. Macpherson & Adam Kleczkowski & John Healey & Nick Hanley, 2015. "When to harvest? The effect of disease on optimal forest rotation," Discussion Papers in Environment and Development Economics 2015-19, University of St. Andrews, School of Geography and Sustainable Development.
    14. McKenney, Daniel W. & Yemshanov, Denys & Fox, Glenn & Ramlal, Elizabeth, 2004. "Cost estimates for carbon sequestration from fast growing poplar plantations in Canada," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 345-358, June.
    15. Yamazaki, Satoshi & Grafton, R. Quentin & Kompas, Tom, 2010. "Non-consumptive values and optimal marine reserve switching," Ecological Economics, Elsevier, vol. 69(12), pages 2427-2434, October.
    16. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    17. Xu, Ying & Amacher, Gregory S. & Sullivan, Jay, 2016. "Optimal forest management with sequential disturbances," Journal of Forest Economics, Elsevier, vol. 24(C), pages 106-122.
    18. Ready, Richard C. & Bergland, Olvar & Romstad, Eirik, 2001. "Optimal Management Of A Forest/Wildlife System With Bilateral Externalities," 2001 Annual meeting, August 5-8, Chicago, IL 20561, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Asante, Patrick & Armstrong, Glen W. & Adamowicz, Wiktor L., 2011. "Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter," Journal of Forest Economics, Elsevier, vol. 17(1), pages 3-17, January.
    20. Price, Colin, 2017. "Optimal rotation with differently-discounted benefit streams," Journal of Forest Economics, Elsevier, vol. 26(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:27:y:2013:i:c:p:1-7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/forpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.