IDEAS home Printed from https://ideas.repec.org/a/eee/finmar/v25y2015icp52-79.html
   My bibliography  Save this article

Evaluating trade classification algorithms: Bulk volume classification versus the tick rule and the Lee-Ready algorithm

Author

Listed:
  • Chakrabarty, Bidisha
  • Pascual, Roberto
  • Shkilko, Andriy

Abstract

We compare the accuracy of the bulk volume classification (BVC) to that of the tick rule (TR) and the Lee-Ready (LR) algorithm for a large sample of equities. TR and LR produce significantly better classifications than the BVC. This result applies to stocks of all sizes, including the most frequently traded. Iteratively optimizing the BVC improves its performance, but the conventional rules still outperform. TR and LR produce more accurate estimates of the volume-synchronized probability of informed trading. Order imbalances computed using TR and LR are comparable to those computed using the BVC in explaining returns, liquidity, and trading costs.

Suggested Citation

  • Chakrabarty, Bidisha & Pascual, Roberto & Shkilko, Andriy, 2015. "Evaluating trade classification algorithms: Bulk volume classification versus the tick rule and the Lee-Ready algorithm," Journal of Financial Markets, Elsevier, vol. 25(C), pages 52-79.
  • Handle: RePEc:eee:finmar:v:25:y:2015:i:c:p:52-79
    DOI: 10.1016/j.finmar.2015.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1386418115000415
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Karl B. Diether & Kuan-Hui Lee & Ingrid M. Werner, 2009. "Short-Sale Strategies and Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 22(2), pages 575-607, February.
    3. Boehmer, Ekkehart & Grammig, Joachim & Theissen, Erik, 2007. "Estimating the probability of informed trading--does trade misclassification matter?," Journal of Financial Markets, Elsevier, vol. 10(1), pages 26-47, February.
    4. Torben G. Andersen & Oleg Bondarenko, 2015. "Assessing Measures of Order Flow Toxicity and Early Warning Signals for Market Turbulence," Review of Finance, European Finance Association, vol. 19(1), pages 1-54.
    5. Craig W. Holden & Stacey Jacobsen, 2014. "Liquidity Measurement Problems in Fast, Competitive Markets: Expensive and Cheap Solutions," Journal of Finance, American Finance Association, vol. 69(4), pages 1747-1785, August.
    6. Andersen, Torben G. & Bondarenko, Oleg, 2014. "VPIN and the flash crash," Journal of Financial Markets, Elsevier, vol. 17(C), pages 1-46.
    7. Finucane, Thomas J., 2000. "A Direct Test of Methods for Inferring Trade Direction from Intra-Day Data," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 553-576, December.
    8. Chordia, Tarun & Subrahmanyam, Avanidhar, 2004. "Order imbalance and individual stock returns: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 72(3), pages 485-518, June.
    9. Huang, Roger D & Stoll, Hans R, 1997. "The Components of the Bid-Ask Spread: A General Approach," Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 995-1034.
    10. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    11. Chakrabarty, Bidisha & Li, Bingguang & Nguyen, Vanthuan & Van Ness, Robert A., 2007. "Trade classification algorithms for electronic communications network trades," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3806-3821, December.
    12. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    13. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    14. Hasbrouck, Joel & Saar, Gideon, 2013. "Low-latency trading," Journal of Financial Markets, Elsevier, vol. 16(4), pages 646-679.
    15. Terrence Hendershott & Charles M. Jones, 2005. "Island Goes Dark: Transparency, Fragmentation, and Regulation," Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 743-793.
    16. David Easley & Marcos M. López de Prado & Maureen O'Hara, 2012. "Flow Toxicity and Liquidity in a High-frequency World," Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1457-1493.
    17. Ellis, Katrina & Michaely, Roni & O'Hara, Maureen, 2000. "The Accuracy of Trade Classification Rules: Evidence from Nasdaq," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 529-551, December.
    18. Easley, David, et al, 1996. "Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-1436, September.
    19. Lee, Charles M. C. & Radhakrishna, Balkrishna, 2000. "Inferring investor behavior: Evidence from TORQ data," Journal of Financial Markets, Elsevier, vol. 3(2), pages 83-111, May.
    20. Odders-White, Elizabeth R., 2000. "On the occurrence and consequences of inaccurate trade classification," Journal of Financial Markets, Elsevier, vol. 3(3), pages 259-286, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Indriawan & Feng Jiao & Yiuman Tse, 2019. "The impact of the US stock market opening on price discovery of government bond futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 779-802, July.
    2. repec:uts:finphd:39 is not listed on IDEAS
    3. Xu, Liao & Xu, Lu & Zhao, Jing & Zhao, Yang, 2020. "Information-based trading and information propagation: Evidence from the exchange traded fund market," International Review of Financial Analysis, Elsevier, vol. 70(C).
    4. Easley, David & de Prado, Marcos Lopez & O'Hara, Maureen, 2016. "Discerning information from trade data," Journal of Financial Economics, Elsevier, vol. 120(2), pages 269-285.
    5. Allen Carrion & Madhuparna Kolay, 2020. "Trade signing in fast markets," The Financial Review, Eastern Finance Association, vol. 55(3), pages 385-404, August.
    6. Abad, David & Massot, Magdalena & Pascual, Roberto, 2018. "Evaluating VPIN as a trigger for single-stock circuit breakers," Journal of Banking & Finance, Elsevier, vol. 86(C), pages 21-36.
    7. Imtiaz Mohammad Sifat & Azhar Mohamad, 2019. "Circuit breakers as market stability levers: A survey of research, praxis, and challenges," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(3), pages 1130-1169, July.
    8. Sifat, Imtiaz Mohammad & Mohamad, Azhar, 2020. "A survey on the magnet effect of circuit breakers in financial markets," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 138-151.
    9. Bernile, Gennaro & Hu, Jianfeng & Tang, Yuehua, 2016. "Can information be locked up? Informed trading ahead of macro-news announcements," Journal of Financial Economics, Elsevier, vol. 121(3), pages 496-520.
    10. Jurkatis, Simon, 2020. "Inferring trade directions in fast markets," Bank of England working papers 896, Bank of England.
    11. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    12. Su, Fei, 2021. "Conditional volatility persistence and volatility spillovers in the foreign exchange market," Research in International Business and Finance, Elsevier, vol. 55(C).
    13. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January.
    14. Abhinava Tripathi & Vipul & Alok Dixit, 0. "Liquidity commonality beyond best prices: Indian evidence," Journal of Asset Management, Palgrave Macmillan, vol. 0, pages 1-19.
    15. Andriy Shkilko & Konstantin Sokolov, 2020. "Every Cloud Has a Silver Lining: Fast Trading, Microwave Connectivity, and Trading Costs," Journal of Finance, American Finance Association, vol. 75(6), pages 2899-2927, December.
    16. Abhinava Tripathi & Vipul & Alok Dixit, 2020. "Liquidity commonality beyond best prices: Indian evidence," Journal of Asset Management, Palgrave Macmillan, vol. 21(4), pages 355-373, July.
    17. repec:uts:finphd:38 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allen Carrion & Madhuparna Kolay, 2020. "Trade signing in fast markets," The Financial Review, Eastern Finance Association, vol. 55(3), pages 385-404, August.
    2. Torben G. Andersen & Oleg Bondarenko, 2015. "Assessing Measures of Order Flow Toxicity and Early Warning Signals for Market Turbulence," Review of Finance, European Finance Association, vol. 19(1), pages 1-54.
    3. Tarun Chordia & Jianfeng Hu & Avanidhar Subrahmanyam & Qing Tong, 2019. "Order Flow Volatility and Equity Costs of Capital," Management Science, INFORMS, vol. 65(4), pages 1520-1551, April.
    4. Chang, Sanders S. & Albert Wang, F., 2019. "Informed contrarian trades and stock returns," Journal of Financial Markets, Elsevier, vol. 42(C), pages 75-93.
    5. Jurkatis, Simon, 2020. "Inferring trade directions in fast markets," Bank of England working papers 896, Bank of England.
    6. Aktas, Osman Ulas & Kryzanowski, Lawrence, 2014. "Trade classification accuracy for the BIST," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 259-282.
    7. Craig W. Holden & Stacey Jacobsen & Avanidhar Subrahmanyam, 2014. "The Empirical Analysis of Liquidity," Foundations and Trends(R) in Finance, now publishers, vol. 8(4), pages 263-365, December.
    8. Hatheway, Frank & Kwan, Amy & Zheng, Hui, 2017. "An Empirical Analysis of Market Segmentation on U.S. Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(6), pages 2399-2427, December.
    9. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    10. Thomas Pöppe & Michael Aitken & Dirk Schiereck & Ingo Wiegand, 2016. "A PIN per day shows what news convey: the intraday probability of informed trading," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1187-1220, November.
    11. Yildiz, Serhat & Van Ness, Bonnie & Van Ness, Robert, 2020. "VPIN, liquidity, and return volatility in the U.S. equity markets," Global Finance Journal, Elsevier, vol. 45(C).
    12. Ben Omrane, Walid & Welch, Robert, 2016. "Tick test accuracy in foreign exchange ECN markets," Research in International Business and Finance, Elsevier, vol. 37(C), pages 135-152.
    13. Campbell, John Y. & Ramadorai, Tarun & Schwartz, Allie, 2009. "Caught on tape: Institutional trading, stock returns, and earnings announcements," Journal of Financial Economics, Elsevier, vol. 92(1), pages 66-91, April.
    14. Lamoureux, Christopher G. & Wang, Qin, 2015. "Measuring private information in a specialist market," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 92-119.
    15. Paul Asquith & Rebecca Oman & Christopher Safaya, 2008. "Short Sales and Trade Classification Algorithms," NBER Working Papers 14158, National Bureau of Economic Research, Inc.
    16. Chakrabarty, Bidisha & Li, Bingguang & Nguyen, Vanthuan & Van Ness, Robert A., 2007. "Trade classification algorithms for electronic communications network trades," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3806-3821, December.
    17. Boehmer, Ekkehart & Grammig, Joachim & Theissen, Erik, 2007. "Estimating the probability of informed trading--does trade misclassification matter?," Journal of Financial Markets, Elsevier, vol. 10(1), pages 26-47, February.
    18. Abad, David & Pascual, Roberto, 2015. "The friction-free weighted price contribution," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 226-239.
    19. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    20. Yan, Yuxing & Zhang, Shaojun, 2014. "Quality of PIN estimates and the PIN-return relationship," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 137-149.

    More about this item

    Keywords

    Trade classification; Bulk volume classification; Tick rule; Lee and Ready; VPIN;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G29 - Financial Economics - - Financial Institutions and Services - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finmar:v:25:y:2015:i:c:p:52-79. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/finmar .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.