IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v63y2024i1d10.1007_s11156-024-01252-w.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Machine learning and trade direction classification: insights from the corporate bond market

Author

Listed:
  • Mark Fedenia

    (University of Wisconsin-Madison)

  • Tavy Ronen

    (Rutgers Business School)

  • Seunghan Nam

    (Independent Researcher)

Abstract

Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.

Suggested Citation

  • Mark Fedenia & Tavy Ronen & Seunghan Nam, 2024. "Machine learning and trade direction classification: insights from the corporate bond market," Review of Quantitative Finance and Accounting, Springer, vol. 63(1), pages 1-36, July.
  • Handle: RePEc:kap:rqfnac:v:63:y:2024:i:1:d:10.1007_s11156-024-01252-w
    DOI: 10.1007/s11156-024-01252-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11156-024-01252-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11156-024-01252-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bessembinder, Hendrik & Maxwell, William & Venkataraman, Kumar, 2006. "Market transparency, liquidity externalities, and institutional trading costs in corporate bonds," Journal of Financial Economics, Elsevier, vol. 82(2), pages 251-288, November.
    2. Edith Hotchkiss & Gergana Jostova, 2017. "Determinants of Corporate Bond Trading: A Comprehensive Analysis," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-30, June.
    3. Bessembinder, Hendrik, 2003. "Issues in assessing trade execution costs," Journal of Financial Markets, Elsevier, vol. 6(3), pages 233-257, May.
    4. Saunders, Anthony & Srinivasan, Anand & Walter, Ingo, 2002. "Price formation in the OTC corporate bond markets: a field study of the inter-dealer market," Journal of Economics and Business, Elsevier, vol. 54(1), pages 95-113.
    5. Craig W. Holden & Stacey Jacobsen, 2014. "Liquidity Measurement Problems in Fast, Competitive Markets: Expensive and Cheap Solutions," Journal of Finance, American Finance Association, vol. 69(4), pages 1747-1785, August.
    6. Michael A. Goldstein & Edith S. Hotchkiss & Erik R. Sirri, 2007. "Transparency and Liquidity: A Controlled Experiment on Corporate Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 235-273.
    7. Asquith, Paul & Oman, Rebecca & Safaya, Christopher, 2010. "Short sales and trade classification algorithms," Journal of Financial Markets, Elsevier, vol. 13(1), pages 157-173, February.
    8. Theissen, Erik, 2001. "A test of the accuracy of the Lee/Ready trade classification algorithm," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 11(2), pages 147-165, June.
    9. Easley, David & de Prado, Marcos Lopez & O'Hara, Maureen, 2016. "Discerning information from trade data," Journal of Financial Economics, Elsevier, vol. 120(2), pages 269-285.
    10. repec:bla:jfinan:v:44:y:1989:i:4:p:827-48 is not listed on IDEAS
    11. Finucane, Thomas J., 2000. "A Direct Test of Methods for Inferring Trade Direction from Intra-Day Data," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 553-576, December.
    12. Panayides, Marios A. & Shohfi, Thomas D. & Smith, Jared D., 2019. "Bulk volume classification and information detection," Journal of Banking & Finance, Elsevier, vol. 103(C), pages 113-129.
    13. Dale W. R. Rosenthal, 2012. "Modeling Trade Direction," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 390-415, 2012 04.
    14. Gabor Pinter & Chaojun Wang & Junyuan Zou, 2024. "Size Discount and Size Penalty: Trading Costs in Bond Markets," The Review of Financial Studies, Society for Financial Studies, vol. 37(7), pages 2156-2190.
    15. Allen Carrion & Madhuparna Kolay, 2020. "Trade signing in fast markets," The Financial Review, Eastern Finance Association, vol. 55(3), pages 385-404, August.
    16. Hendershott, Terrence & Moulton, Pamela C., 2011. "Automation, speed, and stock market quality: The NYSE's Hybrid," Journal of Financial Markets, Elsevier, vol. 14(4), pages 568-604, November.
    17. Hendershott, Terrence & Jones, Charles M., 2005. "Trade-through prohibitions and market quality," Journal of Financial Markets, Elsevier, vol. 8(1), pages 1-23, February.
    18. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    19. Goldstein, Michael A. & Hotchkiss, Edith S., 2020. "Providing liquidity in an illiquid market: Dealer behavior in US corporate bonds," Journal of Financial Economics, Elsevier, vol. 135(1), pages 16-40.
    20. Hasbrouck, Joel, 1988. "Trades, quotes, inventories, and information," Journal of Financial Economics, Elsevier, vol. 22(2), pages 229-252, December.
    21. Ronen, Tavy & Zhou, Xing, 2013. "Trade and information in the corporate bond market," Journal of Financial Markets, Elsevier, vol. 16(1), pages 61-103.
    22. Chakrabarty, Bidisha & Li, Bingguang & Nguyen, Vanthuan & Van Ness, Robert A., 2007. "Trade classification algorithms for electronic communications network trades," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3806-3821, December.
    23. Paul Asquith & Thom Covert & Parag Pathak, 2013. "The Effects of Mandatory Transparency in Financial Market Design: Evidence from the Corporate Bond Market," NBER Working Papers 19417, National Bureau of Economic Research, Inc.
    24. David Easley & Marcos M. López de Prado & Maureen O'Hara, 2012. "Flow Toxicity and Liquidity in a High-frequency World," The Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1457-1493.
    25. Ellis, Katrina & Michaely, Roni & O'Hara, Maureen, 2000. "The Accuracy of Trade Classification Rules: Evidence from Nasdaq," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 529-551, December.
    26. Paul Schultz, 2001. "Corporate Bond Trading Costs: A Peek Behind the Curtain," Journal of Finance, American Finance Association, vol. 56(2), pages 677-698, April.
    27. Peterson, Mark & Sirri, Erik, 2003. "Evaluation of the biases in execution cost estimation using trade and quote data," Journal of Financial Markets, Elsevier, vol. 6(3), pages 259-280, May.
    28. Odders-White, Elizabeth R., 2000. "On the occurrence and consequences of inaccurate trade classification," Journal of Financial Markets, Elsevier, vol. 3(3), pages 259-286, August.
    29. Pankaj K. Jain, 2005. "Financial Market Design and the Equity Premium: Electronic versus Floor Trading," Journal of Finance, American Finance Association, vol. 60(6), pages 2955-2985, December.
    30. Amy K. Edwards & Lawrence E. Harris & Michael S. Piwowar, 2007. "Corporate Bond Market Transaction Costs and Transparency," Journal of Finance, American Finance Association, vol. 62(3), pages 1421-1451, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jurkatis, Simon, 2022. "Inferring trade directions in fast markets," Journal of Financial Markets, Elsevier, vol. 58(C).
    2. Allen Carrion & Madhuparna Kolay, 2020. "Trade signing in fast markets," The Financial Review, Eastern Finance Association, vol. 55(3), pages 385-404, August.
    3. Jurkatis, Simon, 2020. "Inferring trade directions in fast markets," Bank of England working papers 896, Bank of England.
    4. Aktas, Osman Ulas & Kryzanowski, Lawrence, 2014. "Trade classification accuracy for the BIST," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 259-282.
    5. Ben Omrane, Walid & Welch, Robert, 2016. "Tick test accuracy in foreign exchange ECN markets," Research in International Business and Finance, Elsevier, vol. 37(C), pages 135-152.
    6. Donglian Ma & Pengxiang Zhai, 2021. "The Accuracy of the Tick Rule in the Bitcoin Market," SAGE Open, , vol. 11(2), pages 21582440211, May.
    7. Frömmel, Michael & D'Hoore, Dick & Lampaert, Kevin, 2021. "The Accuracy of Trade Classification Systems on the Foreign Exchange Market: Evidence from the RUB/USD Market," Finance Research Letters, Elsevier, vol. 42(C).
    8. Craig W. Holden & Stacey Jacobsen, 2014. "Liquidity Measurement Problems in Fast, Competitive Markets: Expensive and Cheap Solutions," Journal of Finance, American Finance Association, vol. 69(4), pages 1747-1785, August.
    9. Craig W. Holden & Stacey Jacobsen & Avanidhar Subrahmanyam, 2014. "The Empirical Analysis of Liquidity," Foundations and Trends(R) in Finance, now publishers, vol. 8(4), pages 263-365, December.
    10. Chakrabarty, Bidisha & Pascual, Roberto & Shkilko, Andriy, 2015. "Evaluating trade classification algorithms: Bulk volume classification versus the tick rule and the Lee-Ready algorithm," Journal of Financial Markets, Elsevier, vol. 25(C), pages 52-79.
    11. Abad, David & Pascual, Roberto, 2015. "The friction-free weighted price contribution," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 226-239.
    12. Torben G. Andersen & Oleg Bondarenko, 2015. "Assessing Measures of Order Flow Toxicity and Early Warning Signals for Market Turbulence," Review of Finance, European Finance Association, vol. 19(1), pages 1-54.
    13. Gabor Pinter & Chaojun Wang & Junyuan Zou, 2024. "Size Discount and Size Penalty: Trading Costs in Bond Markets," The Review of Financial Studies, Society for Financial Studies, vol. 37(7), pages 2156-2190.
    14. Goldstein, Michael A. & Namin, Elmira Shekari, 2023. "Corporate bond liquidity and yield spreads: A review," Research in International Business and Finance, Elsevier, vol. 65(C).
    15. Boehmer, Ekkehart & Grammig, Joachim & Theissen, Erik, 2007. "Estimating the probability of informed trading--does trade misclassification matter?," Journal of Financial Markets, Elsevier, vol. 10(1), pages 26-47, February.
    16. Yan, Yuxing & Zhang, Shaojun, 2014. "Quality of PIN estimates and the PIN-return relationship," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 137-149.
    17. David Michayluk & Laurie Prather, 2008. "A Liquidity Motivated Algorithm for Discerning Trade Direction," Multinational Finance Journal, Multinational Finance Journal, vol. 12(1-2), pages 45-66, March-Jun.
    18. Eunju Lee, 2016. "Short selling and market mispricing," Review of Quantitative Finance and Accounting, Springer, vol. 47(3), pages 797-833, October.
    19. Paul Asquith & Rebecca Oman & Christopher Safaya, 2008. "Short Sales and Trade Classification Algorithms," NBER Working Papers 14158, National Bureau of Economic Research, Inc.
    20. Asquith, Paul & Oman, Rebecca & Safaya, Christopher, 2010. "Short sales and trade classification algorithms," Journal of Financial Markets, Elsevier, vol. 13(1), pages 157-173, February.

    More about this item

    Keywords

    Machine learning; Trade direction classifiers; Trade signing; Corporate bonds; Equity market; Big data;
    All these keywords.

    JEL classification:

    • G0 - Financial Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:63:y:2024:i:1:d:10.1007_s11156-024-01252-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.