IDEAS home Printed from
   My bibliography  Save this article

The Accuracy of Trade Classification Rules: Evidence from Nasdaq


  • Ellis, Katrina
  • Michaely, Roni
  • O'Hara, Maureen


Researchers are increasingly using data from the Nasdaq market to examine pricing behavior, market design, and other microstructure phenomena. The validity of any study that classifies trades as buys or sells depends on the accuracy of the classification method. Using a Nasdaq proprietary data set that identifies trade direction, we examine the validity of several trade classification algorithms. We find that the quote rule, the tick rule, and the Lee and Ready (1991) rule correctly classify 76.4%, 77.66%, and 81.05% of the trades, respectively. However, all classification rules have only a very limited success in classifying trades executed inside the quotes, introducing a bias in the accuracy of classifying large trades, trades during high volume periods, and ECN trades. We also find that extant algorithms do a mediocre job when used for calculating effective spreads. For Nasdaq trades, we propose a new and simple classification algorithm that improves over extant algorithms.

Suggested Citation

  • Ellis, Katrina & Michaely, Roni & O'Hara, Maureen, 2000. "The Accuracy of Trade Classification Rules: Evidence from Nasdaq," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 529-551, December.
  • Handle: RePEc:cup:jfinqa:v:35:y:2000:i:04:p:529-551_00

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jfinqa:v:35:y:2000:i:04:p:529-551_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.