IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp803-818.html
   My bibliography  Save this article

Synthesis and optimisation of biomass-based tri-generation systems with reliability aspects

Author

Listed:
  • Andiappan, Viknesh
  • Tan, Raymond R.
  • Aviso, Kathleen B.
  • Ng, Denny K.S.

Abstract

Tri-generation systems are utility systems which produce heat, power and cooling simultaneously. Use of tri-generation systems in industrial sites reduces the importation of power and improves local power reliability; at the same time, their inherently higher efficiency also reduces environmental impacts. However, interdependencies among process units in tri-generation plants can lead to vulnerability to cascading failures. Process units may become non-functional during the course of operations as a result of planned or unplanned stoppages. This issue is normally handled by installing additional capacity to the process units based on heuristics. However, such heuristics may not be able to address complex decisions pertaining to the installation of multiple units to provide redundancy, and may result in excessive capital and/or maintenance costs. In this work, a systematic approach for the grassroots design of a reliable BTS (biomass-based tri-generation system) considering equipment redundancy is presented. Chance-constrained programming and k-out-of-m system modelling are used to develop a multi-period optimisation model for a generic BTS. Two case studies are then solved to illustrate this modelling approach.

Suggested Citation

  • Andiappan, Viknesh & Tan, Raymond R. & Aviso, Kathleen B. & Ng, Denny K.S., 2015. "Synthesis and optimisation of biomass-based tri-generation systems with reliability aspects," Energy, Elsevier, vol. 89(C), pages 803-818.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:803-818
    DOI: 10.1016/j.energy.2015.05.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2013. "Operational planning optimization of steam power plants considering equipment failure in petrochemical complex," Applied Energy, Elsevier, vol. 112(C), pages 1247-1264.
    2. Frangopoulos, Christos A. & Dimopoulos, George G., 2004. "Effect of reliability considerations on the optimal synthesis, design and operation of a cogeneration system," Energy, Elsevier, vol. 29(3), pages 309-329.
    3. Maheri, Alireza, 2014. "A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 159-174.
    4. Voll, Philip & Klaffke, Carsten & Hennen, Maike & Bardow, André, 2013. "Automated superstructure-based synthesis and optimization of distributed energy supply systems," Energy, Elsevier, vol. 50(C), pages 374-388.
    5. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    6. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Jiahang & Luo, Xinggang & Li, Yun & Hu, Xiaoqing & Chen, Wenchong & Zhang, Yue, 2022. "Multi criteria decision-making for distributed energy system based on multi-source heterogeneous data," Energy, Elsevier, vol. 239(PD).
    2. Yan, Linbo & Yue, Guangxi & He, Boshu, 2015. "Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system," Energy, Elsevier, vol. 93(P2), pages 1778-1787.
    3. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    4. Cabral, Charlette & Andiappan, Viknesh & Aviso, Kathleen & Tan, Raymond, 2021. "Equipment size selection for optimizing polygeneration systems with reliability aspects," Energy, Elsevier, vol. 234(C).
    5. Sy, Charlle L. & Aviso, Kathleen B. & Ubando, Aristotle T. & Tan, Raymond R., 2016. "Target-oriented robust optimization of polygeneration systems under uncertainty," Energy, Elsevier, vol. 116(P2), pages 1334-1347.
    6. Sadhukhan, Jhuma & Martinez-Hernandez, Elias & Murphy, Richard J. & Ng, Denny K.S. & Hassim, Mimi H. & Siew Ng, Kok & Yoke Kin, Wan & Jaye, Ida Fahani Md & Leung Pah Hang, Melissa Y. & Andiappan, Vikn, 2018. "Role of bioenergy, biorefinery and bioeconomy in sustainable development: Strategic pathways for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1966-1987.
    7. Andiappan, Viknesh & Ng, Denny K.S. & Tan, Raymond R., 2017. "Design Operability and Retrofit Analysis (DORA) framework for energy systems," Energy, Elsevier, vol. 134(C), pages 1038-1052.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    2. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    3. Giada Spaccapanico Proietti & Mariagiulia Matteucci & Stefania Mignani & Bernard P. Veldkamp, 2024. "Chance-Constrained Automated Test Assembly," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 92-120, February.
    4. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    5. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    6. Ali Salmasnia & Mostafa Khatami & Reza Kazemzadeh & Seyed Zegordi, 2015. "Bi-objective single machine scheduling problem with stochastic processing times," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 275-297, April.
    7. Gong, Jiangyue & Gujjula, Krishna Reddy & Ntaimo, Lewis, 2023. "An integrated chance constraints approach for optimal vaccination strategies under uncertainty for COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    8. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.
    9. Remica Aggarwal & S. P. Singh, 2019. "An integrated NPV-based supply chain configuration with third-party logistics services," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(5), pages 367-375, October.
    10. Özcan, Ugur, 2010. "Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-linear, mixed integer program and a simulated annealing algorithm," European Journal of Operational Research, Elsevier, vol. 205(1), pages 81-97, August.
    11. Rashed Khanjani Shiraz & Adel Hatami-Marbini & Ali Emrouznejad & Hirofumi Fukuyama, 2020. "Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs," Operational Research, Springer, vol. 20(3), pages 1863-1898, September.
    12. Alireza Azimian & Belaid Aouni, 2017. "Supply chain management through the stochastic goal programming model," Annals of Operations Research, Springer, vol. 251(1), pages 351-365, April.
    13. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    14. Yongjia Song & Minjiao Zhang, 2015. "Chance‐constrained multi‐terminal network design problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 321-334, June.
    15. Chao Shi & Kenneth C. Land, 2021. "The Data Envelopment Analysis and Equal Weights/Minimax Methods of Composite Social Indicator Construction: a Methodological Study of Data Sensitivity and Robustness," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(4), pages 1689-1716, August.
    16. Elofsson, Katarina & Hiron, Matthew & Kačergytė, Ineta & Pärt, Tomas, 2023. "Ecological compensation of stochastic wetland biodiversity: National or regional policy schemes?," Ecological Economics, Elsevier, vol. 204(PA).
    17. Agpak, Kursad & Gokcen, Hadi, 2007. "A chance-constrained approach to stochastic line balancing problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1098-1115, August.
    18. Aouam, Tarik & Brahimi, Nadjib, 2013. "Integrated production planning and order acceptance under uncertainty: A robust optimization approach," European Journal of Operational Research, Elsevier, vol. 228(3), pages 504-515.
    19. Alireza Amirteimoori & Biresh K. Sahoo & Saber Mehdizadeh, 2023. "Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    20. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:803-818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.