IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221015504.html
   My bibliography  Save this article

Equipment size selection for optimizing polygeneration systems with reliability aspects

Author

Listed:
  • Cabral, Charlette
  • Andiappan, Viknesh
  • Aviso, Kathleen
  • Tan, Raymond

Abstract

Polygeneration systems produce multiple energy streams and other useful outputs at high efficiency and lower environmental impact than stand-alone systems. The interdependency among process units can however lead to cascading failures when equipment capacity fails to meet its load requirement. Since process units are commercially available in discrete sizes, the overall reliability of a polygeneration system is dependent on capacity-load ratio of the selected equipment. The conventional definition of reliability, which is based on whether equipment are operational or not, fails to account for the capacity-load ratio. To address this gap, this paper presents a mixed-integer nonlinear programming (MINLP) model for the synthesis of an optimal energy system that meets reliability specifications. The system reliability is optimized through selection of equipment capacity considering each process unit's intrinsic reliability profile relative to its capacity-load ratio. The rated capacity of the selected equipment size should exceed the expected load of each process unit by a margin that gives the required reliability. The model is applied to a polygeneration system case study to demonstrate its capabilities. The results emphasize the tradeoff between the total annualized cost and the system reliability.

Suggested Citation

  • Cabral, Charlette & Andiappan, Viknesh & Aviso, Kathleen & Tan, Raymond, 2021. "Equipment size selection for optimizing polygeneration systems with reliability aspects," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015504
    DOI: 10.1016/j.energy.2021.121302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221015504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Onishi, Viviani C. & Antunes, Carlos H. & Fraga, Eric S. & Cabezas, Heriberto, 2019. "Stochastic optimization of trigeneration systems for decision-making under long-term uncertainty in energy demands and prices," Energy, Elsevier, vol. 175(C), pages 781-797.
    2. Andiappan, Viknesh & Tan, Raymond R. & Aviso, Kathleen B. & Ng, Denny K.S., 2015. "Synthesis and optimisation of biomass-based tri-generation systems with reliability aspects," Energy, Elsevier, vol. 89(C), pages 803-818.
    3. Lee, Jui-Yuan & Aviso, Kathleen B. & Tan, Raymond R., 2019. "Multi-objective optimisation of hybrid power systems under uncertainties," Energy, Elsevier, vol. 175(C), pages 1271-1282.
    4. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    5. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    6. Zamani Gargari, Milad & Ghaffarpour, Reza, 2020. "Reliability evaluation of multi-carrier energy system with different level of demands under various weather situation," Energy, Elsevier, vol. 196(C).
    7. Rey, Anthony & Zmeureanu, Radu, 2018. "Multi-objective optimization framework for the selection of configuration and equipment sizing of solar thermal combisystems," Energy, Elsevier, vol. 145(C), pages 182-194.
    8. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    9. Orosz, Ákos & Kovács, Zoltán & Friedler, Ferenc, 2019. "Synthesis of heat integrated processing systems taking into account reliability," Energy, Elsevier, vol. 181(C), pages 214-225.
    10. Andiappan, Viknesh & Ng, Denny K.S. & Tan, Raymond R., 2017. "Design Operability and Retrofit Analysis (DORA) framework for energy systems," Energy, Elsevier, vol. 134(C), pages 1038-1052.
    11. Süle, Zoltán & Baumgartner, János & Dörgő, Gyula & Abonyi, János, 2019. "P-graph-based multi-objective risk analysis and redundancy allocation in safety-critical energy systems," Energy, Elsevier, vol. 179(C), pages 989-1003.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andiappan, Viknesh & Ng, Denny K.S. & Tan, Raymond R., 2017. "Design Operability and Retrofit Analysis (DORA) framework for energy systems," Energy, Elsevier, vol. 134(C), pages 1038-1052.
    2. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    3. Sy, Charlle L. & Aviso, Kathleen B. & Ubando, Aristotle T. & Tan, Raymond R., 2016. "Target-oriented robust optimization of polygeneration systems under uncertainty," Energy, Elsevier, vol. 116(P2), pages 1334-1347.
    4. Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
    5. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    6. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    7. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    8. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    9. Javier Uche & Amaya Martínez-Gracia & Ignacio Zabalza & Sergio Usón, 2024. "Renewable Energy Source (RES)-Based Polygeneration Systems for Multi-Family Houses," Sustainability, MDPI, vol. 16(3), pages 1-21, January.
    10. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    12. Bose, Archishman & O'Shea, Richard & Lin, Richen & Long, Aoife & Rajendran, Karthik & Wall, David & De, Sudipta & Murphy, Jerry D., 2022. "The marginal abatement cost of co-producing biomethane, food and biofertiliser in a circular economy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Bourhan Tashtoush & Jing Luo & Tatiana Morosuk, 2024. "Exergy-Based Optimization of a CO 2 Polygeneration System: A Multi-Case Study," Energies, MDPI, vol. 17(2), pages 1-17, January.
    14. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2018. "A novel optimization model based on game tree for multi-energy conversion systems," Energy, Elsevier, vol. 150(C), pages 109-121.
    15. Botond Bertók & Tibor Csendes & Gábor Galambos, 2021. "Operations research in Hungary: VOCAL 2018," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 379-386, June.
    16. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Carlo Roselli & Laura Vanoli, 2020. "Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations," Energies, MDPI, vol. 13(18), pages 1-34, September.
    17. Konstantin Kalmykov & Irina Anikina & Daria Kolbantseva & Milana Trescheva & Dmitriy Treschev & Aleksandr Kalyutik & Alena Aleshina & Iaroslav Vladimirov, 2022. "Use of Heat Pumps in the Hydrogen Production Cycle at Thermal Power Plants," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    18. Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
    19. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    20. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.