IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp214-225.html
   My bibliography  Save this article

Synthesis of heat integrated processing systems taking into account reliability

Author

Listed:
  • Orosz, Ákos
  • Kovács, Zoltán
  • Friedler, Ferenc

Abstract

Because of the ever increasing complexity of processing systems, the reliability becomes a key aspect in selecting the best process during process design. This is especially crucial if heat integration is also part of process design, because it increases the complexity of the system that may reduce its reliability. Since the selection of a process network during synthesis has major influence on the cost, the reliability, and the level of heat integration, these three items must be considered simultaneously in process synthesis. To do so, a general modeling tool is required that simultaneously covers all three areas. In the present work, three formerly developed modeling tools and solution procedures are adapted and integrated, all of them are related to the P-graph framework. Because of their common basis, their integration is natural and highly effective. In addition to the three aspects considered here in synthesizing a process, there are further features to be considered in the final selection of the best process during process design (e.g., controllability and sustainability). The capability of the method in generating all or the n-best networks serves this purpose.

Suggested Citation

  • Orosz, Ákos & Kovács, Zoltán & Friedler, Ferenc, 2019. "Synthesis of heat integrated processing systems taking into account reliability," Energy, Elsevier, vol. 181(C), pages 214-225.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:214-225
    DOI: 10.1016/j.energy.2019.05.173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamsani, Muhammad Nurheilmi & Walmsley, Timothy Gordon & Liew, Peng Yen & Wan Alwi, Sharifah Rafidah, 2018. "Combined Pinch and exergy numerical analysis for low temperature heat exchanger network," Energy, Elsevier, vol. 153(C), pages 100-112.
    2. Gadalla, Mamdouh A., 2015. "A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration," Energy, Elsevier, vol. 81(C), pages 159-174.
    3. Z. Kovacs & A. Orosz & F. Friedler, 2019. "Synthesis algorithms for the reliability analysis of processing systems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 573-595, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cabral, Charlette & Andiappan, Viknesh & Aviso, Kathleen & Tan, Raymond, 2021. "Equipment size selection for optimizing polygeneration systems with reliability aspects," Energy, Elsevier, vol. 234(C).
    2. Hafizan, Ainur Munirah & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abd & Klemeš, Jiří Jaromír & Abd Hamid, Mohd Kamaruddin, 2020. "Design of optimal heat exchanger network with fluctuation probability using break-even analysis," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    2. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2019. "Customised retrofit of heat exchanger network combining area distribution and targeted investment," Energy, Elsevier, vol. 179(C), pages 1054-1066.
    3. Vela-García, Nicolas & Bolonio, David & Mosquera, Ana María & Ortega, Marcelo F. & García-Martínez, María-Jesús & Canoira, Laureano, 2020. "Techno-economic and life cycle assessment of triisobutane production and its suitability as biojet fuel," Applied Energy, Elsevier, vol. 268(C).
    4. Liu, Jian & Xu, Yantao & Zhang, Yaning & Shuai, Yong & Li, Bingxi, 2022. "Multi-objective optimization of low temperature cooling water organic Rankine cycle using dual pinch point temperature difference technologies," Energy, Elsevier, vol. 240(C).
    5. Zdeněk Jegla & Vít Freisleben, 2020. "Practical Energy Retrofit of Heat Exchanger Network Not Containing Utility Path," Energies, MDPI, vol. 13(11), pages 1-16, May.
    6. Aboelazayem, Omar & Gadalla, Mamdouh & Alhajri, Ibrahim & Saha, Basudeb, 2021. "Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC)," Renewable Energy, Elsevier, vol. 164(C), pages 433-443.
    7. Mehdizadeh, Fariba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Total site exergy analysis, using a new conceptual method," Energy, Elsevier, vol. 250(C).
    8. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    9. Botond Bertók & Tibor Csendes & Gábor Galambos, 2021. "Operations research in Hungary: VOCAL 2018," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 379-386, June.
    10. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    11. Wang, Yufei & Zhan, Shihui & Feng, Xiao, 2015. "Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure," Energy, Elsevier, vol. 93(P2), pages 1478-1488.
    12. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    13. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    14. Lal, Nathan S. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2018. "A novel Heat Exchanger Network Bridge Retrofit method using the Modified Energy Transfer Diagram," Energy, Elsevier, vol. 155(C), pages 190-204.
    15. Bohong Wang & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Min Zeng, 2020. "An Extended Grid Diagram for Heat Exchanger Network Retrofit Considering Heat Exchanger Types," Energies, MDPI, vol. 13(10), pages 1-14, May.
    16. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    17. Sun, Wei & Cheng, Qinglin & Li, Zhidong & Wang, Zhihua & Gan, Yifan & Liu, Yang & Shao, Shuai, 2019. "Study on Coil Optimization on the Basis of Heating Effect and Effective Energy Evaluation during Oil Storage Process," Energy, Elsevier, vol. 185(C), pages 505-520.
    18. Babaqi, Badiea S. & Takriff, Mohd S. & Kamarudin, Siti K. & Othman, Nur Tantiyani A. & Ba-Abbad, Muneer M., 2017. "Energy optimization for maximum energy saving with optimal modification in Continuous Catalytic Regeneration Reformer Process," Energy, Elsevier, vol. 120(C), pages 774-784.
    19. Wang, Zhe & Cai, Wenjian & Han, Fenghui & Ji, Yulong & Li, Wenhua & Sundén, Bengt, 2019. "Feasibility study on a novel heat exchanger network for cryogenic liquid regasification with cooling capacity recovery: Theoretical and experimental assessments," Energy, Elsevier, vol. 181(C), pages 771-781.
    20. Sadeghian Jahromi, Farid & Beheshti, Masoud, 2017. "An extended energy saving method for modification of MTP process heat exchanger network," Energy, Elsevier, vol. 140(P1), pages 1059-1073.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:214-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.