IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223008393.html
   My bibliography  Save this article

A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates

Author

Listed:
  • Migo-Sumagang, Maria Victoria
  • Tan, Raymond R.
  • Aviso, Kathleen B.

Abstract

Regionalized Negative Emission Technology (NET) portfolios can sustainably support climate change mitigation. However, current studies focus on individual technologies that may be unsustainable on the large scale. The existing studies also do not consider multiple environmental footprints, technological readiness, and ecological discount rates, which are critical for addressing the future environmental damages of climate change. This study addresses these research gaps by using mixed integer linear programming to develop a multi-footprint, multi-period, optimization model for NET portfolios. The model is illustrated with a case study in the Southeast Asian region until 2100. The results show varying portfolios, with the net present value ranging from USD 516–2783 B, and the negative emissions from 30.42 to 79.56 Gt CO2. The cheaper, technologically ready options like afforestation and biochar are selected earlier in the portfolio, while the initially expensive, emerging technologies like enhanced weathering and direct air capture come later. Land and water are the limiting resources. Both carbon value discounting and using a high initial carbon price support the early deployment of NETs for climate change mitigation. The model currently does not consider synergistic/antagonistic interactions between NETs, multi-objective optimization, and parametric uncertainties, which can be included in future works.

Suggested Citation

  • Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008393
    DOI: 10.1016/j.energy.2023.127445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gollier, Christian, 2010. "Ecological discounting," Journal of Economic Theory, Elsevier, vol. 145(2), pages 812-829, March.
    2. Jessica Strefler & Elmar Kriegler & Nico Bauer & Gunnar Luderer & Robert C. Pietzcker & Anastasis Giannousakis & Ottmar Edenhofer, 2021. "Alternative carbon price trajectories can avoid excessive carbon removal," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Giannousakis, Anastasis & Hilaire, Jérôme & Nemet, Gregory F. & Luderer, Gunnar & Pietzcker, Robert C. & Rodrigues, Renato & Baumstark, Lavinia & Kriegler, Elmar, 2021. "How uncertainty in technology costs and carbon dioxide removal availability affect climate mitigation pathways," Energy, Elsevier, vol. 216(C).
    5. Phil Renforth, 2019. "The negative emission potential of alkaline materials," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    6. Rickels, Wilfried & Merk, Christine & Reith, Fabian & Keller, David P. & Oschlies, Andreas, 2019. "(Mis)conceptions about modeling of negative emissions technologies," Open Access Publications from Kiel Institute for the World Economy 225999, Kiel Institute for the World Economy (IfW Kiel).
    7. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    8. Zhipin Ai & Naota Hanasaki & Vera Heck & Tomoko Hasegawa & Shinichiro Fujimori, 2021. "Global bioenergy with carbon capture and storage potential is largely constrained by sustainable irrigation," Nature Sustainability, Nature, vol. 4(10), pages 884-891, October.
    9. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    10. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    11. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
    12. Rodrigues, Renato & Pietzcker, Robert & Fragkos, Panagiotis & Price, James & McDowall, Will & Siskos, Pelopidas & Fotiou, Theofano & Luderer, Gunnar & Capros, Pantelis, 2022. "Narrative-driven alternative roads to achieve mid-century CO2 net neutrality in Europe," Energy, Elsevier, vol. 239(PA).
    13. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    14. Tapia, John Frederick D. & Lee, Jui-Yuan & Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations," Applied Energy, Elsevier, vol. 184(C), pages 337-345.
    15. Farmer, J. Doyne & Ives, Matthew & Way, Rupert & Mealy, Penny, 2020. "Empirically grounded technology forecasts and the energy transition," INET Oxford Working Papers 2021-01, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised 2021.
    16. Steven J. Lade & Will Steffen & Wim Vries & Stephen R. Carpenter & Jonathan F. Donges & Dieter Gerten & Holger Hoff & Tim Newbold & Katherine Richardson & Johan Rockström, 2020. "Human impacts on planetary boundaries amplified by Earth system interactions," Nature Sustainability, Nature, vol. 3(2), pages 119-128, February.
    17. Pete Smith & Steven J. Davis & Felix Creutzig & Sabine Fuss & Jan Minx & Benoit Gabrielle & Etsushi Kato & Robert B. Jackson & Annette Cowie & Elmar Kriegler & Detlef P. van Vuuren & Joeri Rogelj & Ph, 2016. "Biophysical and economic limits to negative CO2 emissions," Nature Climate Change, Nature, vol. 6(1), pages 42-50, January.
    18. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    19. Nair, Purusothmn Nair S. Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2021. "A generic algebraic targeting approach for integration of renewable energy sources, CO2 capture and storage and negative emission technologies in carbon-constrained energy planning," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).
    3. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Nair, Purusothmn Nair S Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2022. "Extended graphical approach for the implementation of energy-consuming negative emission technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    6. An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).
    7. Wähling, Lara-Sophie & Fridahl, Mathias & Heimann, Tobias & Merk, Christine, 2023. "The sequence matters: Expert opinions on policy mechanisms for bioenergy with carbon capture and storage," Open Access Publications from Kiel Institute for the World Economy 275739, Kiel Institute for the World Economy (IfW Kiel).
    8. Zhao Li & Philippe Ciais & Jonathon S. Wright & Yong Wang & Shu Liu & Jingmeng Wang & Laurent Z. X. Li & Hui Lu & Xiaomeng Huang & Lei Zhu & Daniel S. Goll & Wei Li, 2023. "Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Selene Cobo & Ángel Galán-Martín & Victor Tulus & Mark A. J. Huijbregts & Gonzalo Guillén-Gosálbez, 2022. "Human and planetary health implications of negative emissions technologies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    11. Agnieszka Operacz, 2021. "Possibility of Hydropower Development: A Simple-to-Use Index," Energies, MDPI, vol. 14(10), pages 1-19, May.
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    14. Yuan, Peng & Pu, Yuran & Liu, Chang, 2021. "Improving electricity supply reliability in China: Cost and incentive regulation," Energy, Elsevier, vol. 237(C).
    15. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    16. Birgitta Nordén & Helen Avery, 2021. "Global Learning for Sustainable Development: A Historical Review," Sustainability, MDPI, vol. 13(6), pages 1-31, March.
    17. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    18. Defrancesco, Edi & Gatto, Paola & Rosato, Paolo, 2014. "A ‘component-based’ approach to discounting for natural resource damage assessment," Ecological Economics, Elsevier, vol. 99(C), pages 1-9.
    19. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    20. Kögel, Tomas, 2009. "On the Relation between Dual-Rate Discounting and Substitutability," Economics Discussion Papers 2009-10, Kiel Institute for the World Economy (IfW Kiel).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.