IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v86y2015icp105-114.html
   My bibliography  Save this article

Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions

Author

Listed:
  • Habib, Mohamed A.
  • Nemitallah, Medhat A.
  • Ahmed, Pervez
  • Sharqawy, Mostafa H.
  • Badr, Hassan M.
  • Muhammad, Inam
  • Yaqub, Mohamed

Abstract

The oxygen-methane diffusion flame taking place in a gas turbine reactor was investigated experimentally with emphasis on flame stability. The oxidizer is a mixture of O2 and CO2 and the oxy-combustion process was studied at different equivalence ratios ranging from Φ = 0.5 to 1.0 and different O2/CO2 mixture composition (100/0, 80/20, 60/40, 50/50, 40/60, 30/70 and 25/75). The flame blowout condition was achieved through the reduction of oxygen percentage in the oxidizer mixture. Measurements were obtained for the flue gas temperature and concentration as well as flame visualization. It was found that the flame is very stable at the equivalence ratio of 0.65. At this ratio, the flame blows out at an O2/CO2 blending ratio of 22/78 for the case of fuel flow rate of 6 L/min and at a blending ratio of 21/79 for the case of fuel flow rate of 9 L/min. Attempts for operating the burner with less than 21% O2 were unsuccessful at all ranges of the operating parameters and resulted in unstable operation and blowout. Moreover, it was observed that the stabilization behavior did not change significantly with the variation of the fuel volume flow rate. It was also found that both flame and flue gas temperatures are reduced with the increase of the equivalence ratio.

Suggested Citation

  • Habib, Mohamed A. & Nemitallah, Medhat A. & Ahmed, Pervez & Sharqawy, Mostafa H. & Badr, Hassan M. & Muhammad, Inam & Yaqub, Mohamed, 2015. "Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions," Energy, Elsevier, vol. 86(C), pages 105-114.
  • Handle: RePEc:eee:energy:v:86:y:2015:i:c:p:105-114
    DOI: 10.1016/j.energy.2015.03.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215004697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kotowicz, Janusz & Michalski, Sebastian, 2014. "Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation," Energy, Elsevier, vol. 64(C), pages 109-119.
    2. Nemitallah, Medhat A. & Habib, Mohamed A., 2013. "Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor," Applied Energy, Elsevier, vol. 111(C), pages 401-415.
    3. Staicovici, M.D., 2002. "Further research zero CO2 emission power production: the ‘COOLENERG’ process," Energy, Elsevier, vol. 27(9), pages 831-844.
    4. Mancini, N.D. & Mitsos, A., 2011. "Ion transport membrane reactors for oxy-combustion–Part II: Analysis and comparison of alternatives," Energy, Elsevier, vol. 36(8), pages 4721-4739.
    5. Kvamsdal, Hanne M. & Jordal, Kristin & Bolland, Olav, 2007. "A quantitative comparison of gas turbine cycles with CO2 capture," Energy, Elsevier, vol. 32(1), pages 10-24.
    6. Mancini, N.D. & Mitsos, A., 2011. "Ion transport membrane reactors for oxy-combustion – Part I: intermediate-fidelity modeling," Energy, Elsevier, vol. 36(8), pages 4701-4720.
    7. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    8. Gillespie, Fiona & Metcalfe, Wayne K. & Dirrenberger, Patricia & Herbinet, Olivier & Glaude, Pierre-Alexandre & Battin-Leclerc, Frédérique & Curran, Henry J., 2012. "Measurements of flat-flame velocities of diethyl ether in air," Energy, Elsevier, vol. 43(1), pages 140-145.
    9. Belaissaoui, Bouchra & Cabot, Gilles & Cabot, Marie-Sophie & Willson, David & Favre, Eric, 2012. "An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation," Energy, Elsevier, vol. 38(1), pages 167-175.
    10. Gunasekaran, S. & Mancini, N.D. & Mitsos, A., 2014. "Optimal design and operation of membrane-based oxy-combustion power plants," Energy, Elsevier, vol. 70(C), pages 338-354.
    11. Oh, Jeongseog & Noh, Dongsoon, 2012. "Laminar burning velocity of oxy-methane flames in atmospheric condition," Energy, Elsevier, vol. 45(1), pages 669-675.
    12. Li, Gang & Qian, Suxin & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application," Energy, Elsevier, vol. 65(C), pages 675-691.
    13. Habib, Mohamed A. & Nemitallah, Medhat A., 2015. "Design of an ion transport membrane reactor for application in fire tube boilers," Energy, Elsevier, vol. 81(C), pages 787-801.
    14. Li, Gang & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Review of cold storage materials for subzero applications," Energy, Elsevier, vol. 51(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonca, Guven, 2017. "Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters," Energy, Elsevier, vol. 124(C), pages 579-588.
    2. Habib, Mohamed A. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Abdelhafez, Ahmed, 2017. "Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor," Applied Energy, Elsevier, vol. 189(C), pages 177-186.
    3. Li, Bo & Shi, Baolu & Chu, Qingzhao & Zhao, Xiaoyao & Li, Junwei & Wang, Ningfei, 2019. "Characteristics of stoichiometric CH4/O2/CO2 flame up to the pure oxygen condition," Energy, Elsevier, vol. 168(C), pages 151-159.
    4. Hussain, Muzafar & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Araoye, Abdulrazaq A. & Ben-Mansour, Rached & Habib, Mohamed A., 2020. "A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines," Applied Energy, Elsevier, vol. 279(C).
    5. Said, Syed A. & Aliyu, Mansur & Nemitallah, Medhat A. & Habib, Mohamed A. & Mansir, Ibrahim B., 2018. "Experimental investigation of the stability of a turbulent diffusion flame in a gas turbine combustor," Energy, Elsevier, vol. 157(C), pages 904-913.
    6. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    7. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    8. Abubakar, Zubairu & Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2018. "Experimental and numerical analysis of non-premixed oxy-combustion of hydrogen-enriched propane in a swirl stabilized combustor," Energy, Elsevier, vol. 165(PB), pages 1401-1414.
    9. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner," Applied Energy, Elsevier, vol. 169(C), pages 126-137.
    10. Nemitallah, Medhat A. & Kewlani, Gaurav & Hong, Seunghyuck & Shanbhogue, Santosh J. & Habib, Mohamed A. & Ghoniem, Ahmed F., 2016. "Investigation of a turbulent premixed combustion flame in a backward-facing step combustor; effect of equivalence ratio," Energy, Elsevier, vol. 95(C), pages 211-222.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2020. "Thermodynamic analysis and optimization of an oxy-combustion combined cycle power plant based on a membrane reactor equipped with a high-temperature ion transport membrane ITM," Energy, Elsevier, vol. 205(C).
    2. Habib, Mohamed A. & Nemitallah, Medhat A., 2015. "Design of an ion transport membrane reactor for application in fire tube boilers," Energy, Elsevier, vol. 81(C), pages 787-801.
    3. Nemitallah, Medhat A. & Habib, Mohamed A. & Mezghani, K., 2015. "Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor," Energy, Elsevier, vol. 84(C), pages 600-611.
    4. Turi, Davide Maria & Chiesa, Paolo & Macchi, Ennio & Ghoniem, Ahmed F., 2016. "High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data," Energy, Elsevier, vol. 96(C), pages 127-141.
    5. Shin, Donghwan & Kang, Sanggyu, 2018. "Numerical analysis of an ion transport membrane system for oxy–fuel combustion," Applied Energy, Elsevier, vol. 230(C), pages 875-888.
    6. Gunasekaran, S. & Mancini, N.D. & El-Khaja, R. & Sheu, E.J. & Mitsos, A., 2014. "Solar–thermal hybridization of advanced zero emissions power cycle," Energy, Elsevier, vol. 65(C), pages 152-165.
    7. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    8. Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Nemitallah, Medhat A. & Ben-Mansour, R. & Mokheimer, Esmail M.A., 2016. "Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor," Energy, Elsevier, vol. 96(C), pages 654-665.
    9. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    10. de Persis, Stéphanie & Foucher, Fabrice & Pillier, Laure & Osorio, Vladimiro & Gökalp, Iskender, 2013. "Effects of O2 enrichment and CO2 dilution on laminar methane flames," Energy, Elsevier, vol. 55(C), pages 1055-1066.
    11. Gunasekaran, S. & Mancini, N.D. & Mitsos, A., 2014. "Optimal design and operation of membrane-based oxy-combustion power plants," Energy, Elsevier, vol. 70(C), pages 338-354.
    12. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    13. Kishore, T.S. & Singal, S.K., 2014. "Optimal economic planning of power transmission lines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 949-974.
    14. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    15. Habib, Mohamed A. & Imteyaz, Binash & Nemitallah, Medhat A., 2020. "Second law analysis of premixed and non-premixed oxy-fuel combustion cycles utilizing oxygen separation membranes," Applied Energy, Elsevier, vol. 259(C).
    16. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2019. "Low-quality or high-quality coal? Household energy choice in rural Beijing," Energy Economics, Elsevier, vol. 78(C), pages 81-90.
    17. Siddique, Abu Raihan Mohammad & Rabari, Ronil & Mahmud, Shohel & Heyst, Bill Van, 2016. "Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique," Energy, Elsevier, vol. 115(P1), pages 1081-1091.
    18. Ahmed, Pervez & Habib, Mohamed A. & Ben-Mansour, Rached & Kirchen, Patrick & Ghoniem, Ahmed F., 2014. "CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion," Energy, Elsevier, vol. 77(C), pages 932-944.
    19. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    20. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:86:y:2015:i:c:p:105-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.