IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp1055-1066.html
   My bibliography  Save this article

Effects of O2 enrichment and CO2 dilution on laminar methane flames

Author

Listed:
  • de Persis, Stéphanie
  • Foucher, Fabrice
  • Pillier, Laure
  • Osorio, Vladimiro
  • Gökalp, Iskender

Abstract

This study presents the effects of O2 enrichment and CO2 (carbon dioxide) dilution on laminar methane flames. For that purpose, the following procedure was followed: i) measurements of laminar methane flame velocities carried out in a stainless steel combustion chamber at atmospheric pressure and 300 K; ii) calculations and comparison with experiments of laminar flame velocities to validate the reaction mechanism; and iii) simulations in larger ranges of flames conditions near to gas turbine conditions: premixed methane–air flames, preheated inlet temperature (To = 600 K) and pressures ranging from 1 to 8 bar. Lean, stoichiometric and slightly rich conditions were studied as the equivalence ratio was varied from 0.7 to 1.1. Both influences of the oxygen enrichment and CO2 dilution are discussed.

Suggested Citation

  • de Persis, Stéphanie & Foucher, Fabrice & Pillier, Laure & Osorio, Vladimiro & Gökalp, Iskender, 2013. "Effects of O2 enrichment and CO2 dilution on laminar methane flames," Energy, Elsevier, vol. 55(C), pages 1055-1066.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:1055-1066
    DOI: 10.1016/j.energy.2013.04.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213003526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.04.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    2. Li, Hailong & Ditaranto, Mario & Berstad, David, 2011. "Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture," Energy, Elsevier, vol. 36(2), pages 1124-1133.
    3. Mofarahi, Masoud & Khojasteh, Yaser & Khaledi, Hiwa & Farahnak, Arsalan, 2008. "Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine," Energy, Elsevier, vol. 33(8), pages 1311-1319.
    4. Oh, Jeongseog & Noh, Dongsoon, 2012. "Laminar burning velocity of oxy-methane flames in atmospheric condition," Energy, Elsevier, vol. 45(1), pages 669-675.
    5. Bounaceur, Roda & Lape, Nancy & Roizard, Denis & Vallieres, Cécile & Favre, Eric, 2006. "Membrane processes for post-combustion carbon dioxide capture: A parametric study," Energy, Elsevier, vol. 31(14), pages 2556-2570.
    6. Kvamsdal, Hanne M. & Jordal, Kristin & Bolland, Olav, 2007. "A quantitative comparison of gas turbine cycles with CO2 capture," Energy, Elsevier, vol. 32(1), pages 10-24.
    7. Kotowicz, Janusz & Bartela, Łukasz, 2012. "Optimisation of the connection of membrane CCS installation with a supercritical coal-fired power plant," Energy, Elsevier, vol. 38(1), pages 118-127.
    8. Belaissaoui, Bouchra & Cabot, Gilles & Cabot, Marie-Sophie & Willson, David & Favre, Eric, 2012. "An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation," Energy, Elsevier, vol. 38(1), pages 167-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Xianzhong & Yu, Qingbo, 2018. "Effect of the elevated initial temperature on the laminar flame speeds of oxy-methane mixtures," Energy, Elsevier, vol. 147(C), pages 876-883.
    2. Aliyu, Mansur & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Said, Syed A.M. & Habib, Mohamed A., 2022. "Effects of adiabatic flame temperature on flames’ characteristics in a gas-turbine combustor," Energy, Elsevier, vol. 243(C).
    3. Bělohradský, Petr & Skryja, Pavel & Hudák, Igor, 2014. "Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics," Energy, Elsevier, vol. 75(C), pages 116-126.
    4. Hu, Xianzhong & Yu, Qingbo & Liu, Junxiang & Sun, Nan, 2014. "Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation," Energy, Elsevier, vol. 70(C), pages 626-634.
    5. Oh, Jeongseog & Noh, Dongsoon & Ko, Changbok, 2013. "The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Energy, Elsevier, vol. 62(C), pages 362-369.
    6. Said, Syed A. & Aliyu, Mansur & Nemitallah, Medhat A. & Habib, Mohamed A. & Mansir, Ibrahim B., 2018. "Experimental investigation of the stability of a turbulent diffusion flame in a gas turbine combustor," Energy, Elsevier, vol. 157(C), pages 904-913.
    7. Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
    8. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    9. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2015. "Studying heat integration options for steam-gas power plants retrofitted with CO2 post-combustion capture," Energy, Elsevier, vol. 85(C), pages 594-608.
    10. Pavel Skryja & Igor Hudak & Jiří Bojanovsky & Zdeněk Jegla & Lubomír Korček, 2022. "Effects of Oxygen-Enhanced Combustion Methods on Combustion Characteristics of Non-Premixed Swirling Flames," Energies, MDPI, vol. 15(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giordano, Lorena & Roizard, Denis & Bounaceur, Roda & Favre, Eric, 2016. "Interplay of inlet temperature and humidity on energy penalty for CO2 post-combustion capture: Rigorous analysis and simulation of a single stage gas permeation process," Energy, Elsevier, vol. 116(P1), pages 517-525.
    2. Belaissaoui, Bouchra & Cabot, Gilles & Cabot, Marie-Sophie & Willson, David & Favre, Eric, 2012. "An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation," Energy, Elsevier, vol. 38(1), pages 167-175.
    3. Habib, Mohamed A. & Nemitallah, Medhat A. & Ahmed, Pervez & Sharqawy, Mostafa H. & Badr, Hassan M. & Muhammad, Inam & Yaqub, Mohamed, 2015. "Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions," Energy, Elsevier, vol. 86(C), pages 105-114.
    4. Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
    5. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    6. Wawrzyńczak, Dariusz & Panowski, Marcin & Majchrzak-Kucęba, Izabela, 2019. "Possibilities of CO2 purification coming from oxy-combustion for enhanced oil recovery and storage purposes by adsorption method on activated carbon," Energy, Elsevier, vol. 180(C), pages 787-796.
    7. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
    8. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    9. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    10. Zhang, Yingying & Ji, Xiaoyan & Lu, Xiaohua, 2014. "Energy consumption analysis for CO2 separation from gas mixtures," Applied Energy, Elsevier, vol. 130(C), pages 237-243.
    11. Kotowicz, Janusz & Chmielniak, Tadeusz & Janusz-Szymańska, Katarzyna, 2010. "The influence of membrane CO2 separation on the efficiency of a coal-fired power plant," Energy, Elsevier, vol. 35(2), pages 841-850.
    12. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    13. Sreedhar, I. & Vaidhiswaran, R. & Kamani, Bansi. M. & Venugopal, A., 2017. "Process and engineering trends in membrane based carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 659-684.
    14. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand, 2016. "Post combustion carbon capture: Does optimization of the processing system based on energy and utility requirements warrant the lowest possible costs?," Energy, Elsevier, vol. 112(C), pages 353-363.
    15. Song, Chunfeng & Liu, Qingling & Ji, Na & Deng, Shuai & Zhao, Jun & Li, Yang & Kitamura, Yutaka, 2017. "Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization," Energy, Elsevier, vol. 124(C), pages 29-39.
    16. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    17. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    18. Gunasekaran, S. & Mancini, N.D. & El-Khaja, R. & Sheu, E.J. & Mitsos, A., 2014. "Solar–thermal hybridization of advanced zero emissions power cycle," Energy, Elsevier, vol. 65(C), pages 152-165.
    19. Cormos, Calin-Cristian, 2014. "Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle," Energy, Elsevier, vol. 78(C), pages 665-673.
    20. Oh, Jeongseog & Noh, Dongsoon & Ko, Changbok, 2013. "The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Energy, Elsevier, vol. 62(C), pages 362-369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:1055-1066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.