IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v213y2020ics0360544220320867.html
   My bibliography  Save this article

Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures

Author

Listed:
  • Li, Ruikang
  • Luo, Zhenmin
  • Wang, Tao
  • Cheng, Fangming
  • Lin, Haifei
  • Zhu, Xiaochun

Abstract

To investigate the temperature dependence of H2-poor/CH4/air mixtures explosions, the corresponding explosion characteristics are studied by experimental and numerical methods. The explosion pressure history and flame propagating are obtained using a 20 L spherical tank and a high-speed camera. The heat loss is calculated and the temperature sensitivity and the rate of production are analysed engaged in the GRI-mech 3.0 mechanism. Results showed that the addition of H2 has the highest improvement in the explosion characteristics of 7 vol% CH4 mixtures. The effect on the explosion is mainly reflected in the flame speed and explosion time caused by the changes in heat loss. As the initial temperature increase, the most positive and negative reaction on the temperature sensitivity is R38 and R158, respectively. After H2 addition, the overall sensitivity is reduced and the dominant role of R38 is more prominent. Based on the ROP development, the whole reaction is divided into 4 stages: reaction acceleration, extreme reaction, intermediate species conversion, and reaction termination. Moreover, R38 is the most promoted and dominant reaction for ROP of O2 and OH. R84 is the most inhibit reaction of H2 oxidation and has a great influence on the ROP of OH.

Suggested Citation

  • Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220320867
    DOI: 10.1016/j.energy.2020.118979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220320867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Faghani-Lamraski, Morteza, 2017. "Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propane-air premixed flame dynamics in non-adiabatic meso-scale reactors," Energy, Elsevier, vol. 121(C), pages 657-675.
    2. Luo, Zhenmin & Li, Dafang & Su, Bin & Zhang, Siqi & Deng, Jun, 2020. "On the time coupling analysis of explosion pressure and intermediate generation for multiple flammable gases," Energy, Elsevier, vol. 198(C).
    3. Shen, Xiaobo & Zhang, Chao & Xiu, Guangli & Zhu, Hongya, 2019. "Evolution of premixed stoichiometric hydrogen/air flame in a closed duct," Energy, Elsevier, vol. 176(C), pages 265-271.
    4. de Persis, Stéphanie & Foucher, Fabrice & Pillier, Laure & Osorio, Vladimiro & Gökalp, Iskender, 2013. "Effects of O2 enrichment and CO2 dilution on laminar methane flames," Energy, Elsevier, vol. 55(C), pages 1055-1066.
    5. Yang, Xufeng & Yu, Minggao & Zheng, Kai & Wan, Shaojie & Wang, Liang, 2019. "A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts," Energy, Elsevier, vol. 178(C), pages 436-446.
    6. Li, Hong-Meng & Li, Guo-Xiu & Jiang, Yan-Huan & Li, Lei & Li, Fu-Sheng, 2018. "Flame stability and propagation characteristics for combustion in air for an equimolar mixture of hydrogen and carbon monoxide in turbulent conditions," Energy, Elsevier, vol. 157(C), pages 76-86.
    7. Li, Zhenming & Gong, Maoqiong & Sun, Eryan & Wu, Jianfeng & Zhou, Yuan, 2011. "Effect of low temperature on the flammability limits of methane/nitrogen mixtures," Energy, Elsevier, vol. 36(9), pages 5521-5524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Chang & Lv, Xianshu & Wang, Yalei & Wu, Chuandong & Chen, Lei & Yan, Xingqing & Yu, Jianliang, 2023. "Effects of ethylene addition and dilution on the explosion characteristics of ethane-ethylene mixtures," Energy, Elsevier, vol. 280(C).
    2. Zhou, Shangyong & Gao, Jiancun & Luo, Zhenmin & Hu, Shoutao & Wang, Le & Wang, Tao, 2022. "Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism," Energy, Elsevier, vol. 239(PC).
    3. Miriam Reyes & Rosaura Sastre & Blanca Giménez & Clara Sesma, 2022. "Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures," Energies, MDPI, vol. 15(10), pages 1-20, May.
    4. Qi, Chang & Ding, Jianfei & Wang, Yue & Ning, Ye & Wang, Yalei & Liang, He & Yan, Xingqing & Yu, Jianliang, 2023. "Investigation of the upper flammability limit of ethylene/propane mixtures in air at high temperatures and pressures," Energy, Elsevier, vol. 281(C).
    5. Jiang, Haipeng & Bi, Mingshu & Gao, Zehua & Zhang, Zongling & Gao, Wei, 2022. "Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions," Energy, Elsevier, vol. 239(PC).
    6. Liu, Guilong & Wang, Jian & Zheng, Ligang & Pan, Rongkun & Lu, Chang & Wang, Yan & Zhao, Yongxian & Li, Yanjie, 2023. "Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions," Energy, Elsevier, vol. 276(C).
    7. Li, Dafang & Sun, Weifu & Luo, Zhenmin, 2023. "Methane deflagration promoted by enhancing ignition efficiency via hydrogen doping, with a view to fracturing shales," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Zhang, Chao, 2021. "Premixed CO/air combustion in a closed duct with inhibition," Energy, Elsevier, vol. 230(C).
    2. Cai, Peng & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Pengliang & Li, Shuhong & Li, Yingke, 2022. "Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel," Energy, Elsevier, vol. 250(C).
    3. Aliyu, Mansur & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Said, Syed A.M. & Habib, Mohamed A., 2022. "Effects of adiabatic flame temperature on flames’ characteristics in a gas-turbine combustor," Energy, Elsevier, vol. 243(C).
    4. Dou, Zengguo & Shen, Xiaobo & Zhang, Zhenwu & Zhou, Feng & Ma, Yunsheng & Zou, Xiong & Liu, Haifeng & Wang, Fuchen, 2023. "Effects of aspect ratio and initial pressure on asymmetric flame and flame instability of premixed CO/air," Energy, Elsevier, vol. 278(PA).
    5. Huadao Xing & Runze Yu & Guangan Xu & Xiaodong Li & Yanyu Qiu & Derong Wang & Bin Li & Lifeng Xie, 2022. "Theoretical and Experimental Investigation of Explosion Characteristics of Hydrogen Explosion in a Closed Vessel," Energies, MDPI, vol. 15(22), pages 1-14, November.
    6. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    7. Hu, Xianzhong & Yu, Qingbo, 2018. "Effect of the elevated initial temperature on the laminar flame speeds of oxy-methane mixtures," Energy, Elsevier, vol. 147(C), pages 876-883.
    8. Wu, Xi & Yang, Zhao & Wang, Xiaoming & Lin, Yulong, 2013. "Experimental and theoretical study on the influence of temperature and humidity on the flammability limits of ethylene (R1150)," Energy, Elsevier, vol. 52(C), pages 185-191.
    9. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    10. Zheng, Shizhuo & Zhang, Xin & Wang, Tao & Liu, Jie, 2015. "An experimental study on premixed laminar and turbulent combustion of synthesized coalbed methane," Energy, Elsevier, vol. 92(P3), pages 355-364.
    11. Yang, Ke & Chen, Kaifeng & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Wu, Jie & Jiang, Juncheng, 2021. "Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion," Energy, Elsevier, vol. 237(C).
    12. Luo, Zhenmin & Kang, Xiaofeng & Wang, Tao & Su, Bin & Cheng, Fangming & Deng, Jun, 2021. "Effects of an obstacle on the deflagration behavior of premixed liquefied petroleum gas-air mixtures in a closed duct," Energy, Elsevier, vol. 234(C).
    13. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2015. "Studying heat integration options for steam-gas power plants retrofitted with CO2 post-combustion capture," Energy, Elsevier, vol. 85(C), pages 594-608.
    14. Jing, Qi & Wang, Dan & Shi, Congling, 2023. "Effects of aluminum powder additives on deflagration and detonation performance of JP-10/DEE mixed fuel under weak and strong ignition conditions," Applied Energy, Elsevier, vol. 331(C).
    15. Shilong, Zhao & Yuxin, Fan, 2020. "Experimental and numerical study on fuel distribution and flame expansion of the enhanced flame holding devices," Energy, Elsevier, vol. 203(C).
    16. Mendiburu, Andrés Z. & de Carvalho, João A. & Coronado, Christian R. & Roberts, Justo J., 2017. "Flammability limits temperature dependence of pure compounds in air at atmospheric pressure," Energy, Elsevier, vol. 118(C), pages 414-424.
    17. Hu, Xianzhong & Yu, Qingbo & Liu, Junxiang & Sun, Nan, 2014. "Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation," Energy, Elsevier, vol. 70(C), pages 626-634.
    18. Wang, Tao & Luo, Zhenmin & Wen, Hu & Cheng, Fangming & Liu, Litao & Su, Yang & Liu, Changchun & Zhao, Jingyu & Deng, Jun & Yu, Minggao, 2021. "The explosion enhancement of methane-air mixtures by ethylene in a confined chamber," Energy, Elsevier, vol. 214(C).
    19. Shen, Xiaobo & Xu, Jiaying & Wen, Jennifer X., 2021. "Phenomenological characteristics of hydrogen/air premixed flame propagation in closed rectangular channels," Renewable Energy, Elsevier, vol. 174(C), pages 606-615.
    20. Li, Dafang & Sun, Weifu & Luo, Zhenmin, 2023. "Methane deflagration promoted by enhancing ignition efficiency via hydrogen doping, with a view to fracturing shales," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220320867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.