IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v285y2021ics0306261921000477.html
   My bibliography  Save this article

Effects of propane addition and burner scale on the combustion characteristics and working performance

Author

Listed:
  • Peng, Qingguo
  • Yang, Wenming
  • E, Jiaqiang
  • Li, Shaobo
  • Li, Zhenwei
  • Xu, Hongpeng
  • Fu, Guang

Abstract

In order to investigate the micro combustion characteristic, thermal performance, as well as boost the energy efficiency and extend its application, the effects of burner size and fuel properties on combustion and working performance are studied. The results indicate that 5% propane added to premixed H2/air combustion contributes to the flame relocation and flame stretch, affecting the thermal performance of burner. It also enhances the heat transfer of gas-wall and increases the radiation power at a lower fuel flow rate. Moreover, the chamber diameter and heat recirculation zone also effectively alter the working performance of the burning reactions and extend the limit of flame blow-off, and a more uniform temperature profile along the outer wall can be achieved in the tube with suitable step height or larger size. It is also found that the small tube size boosts the radiation temperature and limits the chemical input, while the heat release from burning is more difficult to be transferred to the wall in the large chamber. Subsequently, a comparison study indicated that the micro-thermophotovoltaic system with InGaAsSb photovoltaic cells and tube T5-2 is more suitable for the application and generates an electrical power output of 1.74 W when the hydrogen flow rate is 876 mL/min and the equivalence ratio is 1.0.

Suggested Citation

  • Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261921000477
    DOI: 10.1016/j.apenergy.2021.116484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921000477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vijayan, V. & Gupta, A.K., 2010. "Combustion and heat transfer at meso-scale with thermal recuperation," Applied Energy, Elsevier, vol. 87(8), pages 2628-2639, August.
    2. Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Faghani-Lamraski, Morteza, 2017. "Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propane-air premixed flame dynamics in non-adiabatic meso-scale reactors," Energy, Elsevier, vol. 121(C), pages 657-675.
    3. Xiang, Ying & Yuan, Zili & Wang, Shixuan & Fan, Aiwu, 2019. "Effects of flow rate and fuel/air ratio on propagation behaviors of diffusion H2/air flames in a micro-combustor," Energy, Elsevier, vol. 179(C), pages 315-322.
    4. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    5. Shirsat, V. & Gupta, A.K., 2011. "A review of progress in heat recirculating meso-scale combustors," Applied Energy, Elsevier, vol. 88(12), pages 4294-4309.
    6. Chen, Wei-Hsin & Lin, Shih-Cheng, 2015. "Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation," Energy, Elsevier, vol. 82(C), pages 206-217.
    7. Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
    8. Ferrari, Claudio & Melino, Francesco & Pinelli, Michele & Spina, Pier Ruggero, 2014. "Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences," Applied Energy, Elsevier, vol. 113(C), pages 1717-1730.
    9. Li, Yueh-Heng & Chen, Guan-Bang & Cheng, Tsarng-Sheng & Yeh, Yean-Ling & Chao, Yei-Chin, 2013. "Combustion characteristics of a small-scale combustor with a percolated platinum emitter tube for thermophotovoltaics," Energy, Elsevier, vol. 61(C), pages 150-157.
    10. McGurk, Stephen J. & Martín, Claudia F. & Brandani, Stefano & Sweatman, Martin B. & Fan, Xianfeng, 2017. "Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 192(C), pages 126-133.
    11. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    12. Shirsat, V. & Gupta, A.K., 2013. "Extinction, discharge, and thrust characteristics of methanol fueled meso-scale thrust chamber," Applied Energy, Elsevier, vol. 103(C), pages 375-392.
    13. Chou, S.K. & Yang, W.M. & Li, J. & Li, Z.W., 2010. "Porous media combustion for micro thermophotovoltaic system applications," Applied Energy, Elsevier, vol. 87(9), pages 2862-2867, September.
    14. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    15. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    16. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Xu, Hongpeng & Li, Zhenwei & Tay, Kunlin & Zeng, Guang & Yu, Wenbin, 2020. "Investigation on premixed H2/C3H8/air combustion in porous medium combustor for the micro thermophotovoltaic application," Applied Energy, Elsevier, vol. 260(C).
    17. Bani, Stephen & Pan, Jianfeng & Tang, Aikun & Lu, Qingbo & Zhang, Yi, 2018. "Numerical investigation of key parameters of the porous media combustion based Micro-Thermophotovoltaic system," Energy, Elsevier, vol. 157(C), pages 969-978.
    18. Alipoor, Alireza & Saidi, Mohammad Hassan, 2017. "Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator," Applied Energy, Elsevier, vol. 199(C), pages 382-399.
    19. Shirsat, V. & Gupta, A.K., 2011. "Performance characteristics of methanol and kerosene fuelled meso-scale heat-recirculating combustors," Applied Energy, Elsevier, vol. 88(12), pages 5069-5082.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Shihao & Wei, Jia & Xie, Bo & Shi, Zhiwei & Wang, Hao & Tian, Xinghua & He, Biao & Peng, Qingguo, 2023. "Experimental and numerical investigation on H2-fueled thermophotovoltaic micro tube with multi-cavity," Energy, Elsevier, vol. 274(C).
    2. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    3. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    4. Gao, Lingjie & Tang, Aikun & Cai, Tao & Tenkolu, Getachew Alemu, 2024. "Experimental analysis and multi-objective optimization of flame dynamics and combustion performance in methane-fueled slit-type combustors," Applied Energy, Elsevier, vol. 355(C).
    5. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    6. Wang, Hao & Peng, Qingguo & Tian, Xinghua & Yan, Feng & Wei, Depeng & Liu, Hui, 2024. "Experimental and numerical investigation on H2-fueled micro-thermophotovoltaic with CH4 and C3H8 blending in a tube fully/partially inserted porous media," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Tongroon, Manida & Chuepeng, Sathaporn, 2022. "Adjacent combustion heat release and emissions over various load ranges in a premixed direct injection diesel engine: A comparison between gasoline and ethanol port injection," Energy, Elsevier, vol. 243(C).
    8. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).
    9. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    2. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    3. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    4. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    5. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Xu, Hongpeng & Li, Zhenwei & Tay, Kunlin & Zeng, Guang & Yu, Wenbin, 2020. "Investigation on premixed H2/C3H8/air combustion in porous medium combustor for the micro thermophotovoltaic application," Applied Energy, Elsevier, vol. 260(C).
    6. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    7. Akhtar, Saad & Khan, Mohammed N. & Kurnia, Jundika C. & Shamim, Tariq, 2017. "Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications," Applied Energy, Elsevier, vol. 192(C), pages 134-145.
    8. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    9. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).
    10. Liu, Zeqi & Liu, Wanhao & Du, Yiqing & Fan, Aiwu, 2024. "Experimental study on the propagation characteristics of non-premixed H2/air flames in a curved micro-combustor," Energy, Elsevier, vol. 299(C).
    11. Zuo, Wei & Zhang, Yuntian & Li, Qingqing & Li, Jing & He, Zhu, 2021. "Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications," Energy, Elsevier, vol. 223(C).
    12. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    13. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    14. E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
    15. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    16. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    17. Tan, Yan & E, Jiaqiang & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Li, Jintao, 2022. "Investigation on combustion characteristics and thermal performance of a three rearward-step structure micro combustor fueled by premixed hydrogen/air," Renewable Energy, Elsevier, vol. 186(C), pages 486-504.
    18. Sun, Bowen & Kang, Xin & Wang, Yu, 2020. "Numerical investigations on the methane-oxygen diffusion flame-street phenomena in a microchannel: Effects of wall temperatures, inflow rates and global equivalence ratios on flame behaviors and combu," Energy, Elsevier, vol. 207(C).
    19. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    20. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261921000477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.