IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012179.html
   My bibliography  Save this article

Experimental study on the propagation characteristics of non-premixed H2/air flames in a curved micro-combustor

Author

Listed:
  • Liu, Zeqi
  • Liu, Wanhao
  • Du, Yiqing
  • Fan, Aiwu

Abstract

In this study, propagation characteristics of non-premixed H2/air flames in a curved micro-combustor were experimentally investigated. It was found that after cold-state ignition at the combustor exit, flames can propagate upstream and form a stable flame over a wide range of average inlet velocity (Vave,in) and nominal equivalence ratio (φ). The top-wall temperature distribution demonstrated that a flame separation phenomenon occurs when φ ≤ 1. High temperature zone of the combustor wall expanded and shifted downstream with an increasing Vave,in; however, with an increase in φ, it expanded initially and then shrank, and moved toward the air-side. The maximum wall temperature varied non-monotonically with both the Vave,in and φ, and they peaked at Vave,in = 1.5 m/s and φ = 1.6, respectively. Both lower and upper propagation limits (i.e., propagable velocities) exhibited non-monotonic tendencies versus φ. Specifically, the lowest and highest propagation limits are 0.3 m/s and 7.0 m/s, respectively, and they both occur at φ = 1.4. Empirical correlations of the propagation limits and propagable velocity range with φ were obtained. In summary, the present study demonstrated the feasibility of cold-state ignition of non-premixed H2/air for curved micro-combustors, and revealed the main flame propagation characteristics.

Suggested Citation

  • Liu, Zeqi & Liu, Wanhao & Du, Yiqing & Fan, Aiwu, 2024. "Experimental study on the propagation characteristics of non-premixed H2/air flames in a curved micro-combustor," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012179
    DOI: 10.1016/j.energy.2024.131444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.