IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v242y2025ics0960148125000837.html
   My bibliography  Save this article

Numerical study of combustion characteristics and flame evolution behavior in a micro-planar combustor under sudden changes in operating conditions

Author

Listed:
  • Wei, Yu
  • Yan, Yunfei
  • Zhang, Chenghua
  • Wu, Yonghong
  • You, Jingxiang
  • He, Ziqiang

Abstract

Micro-combustors are frequently exposed to sudden changes in operating conditions, leading to flame breakage and fuel leakage, which is not conducive to clean combustion and sustainable development. In this paper, the changes in flame behavior in micro-planar combustors is numerically simulated under sudden changes in velocity, equivalent ratio, inlet temperature and compound conditions. According to the findings, the sudden increase in velocity (8–12 m/s) results in 3.1 mm flame backward and 3.91 % combustion efficiency decrease, while sudden decrease (12-6 m/s) forces the flame position to move forward 6.8 mm and increases combustion efficiency by 5.99 %. Besides, the sudden change of the equivalent ratio has the most significant impact on combustion efficiency, with a maximum difference of 16.63 %. The sudden increase in temperature has a positive effect on combustion efficiency and flame position, which is the result of inlet preheating, and the opposite effect is negative. Finally, under compound conditions, it is found that the sudden changes in fuel equivalent ratio and inlet velocity are the primary factors influencing changes in combustion efficiency. This study elaborated the combustion characteristic changes under single and compound conditions, which has important reference values for combustion under different operating conditions.

Suggested Citation

  • Wei, Yu & Yan, Yunfei & Zhang, Chenghua & Wu, Yonghong & You, Jingxiang & He, Ziqiang, 2025. "Numerical study of combustion characteristics and flame evolution behavior in a micro-planar combustor under sudden changes in operating conditions," Renewable Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000837
    DOI: 10.1016/j.renene.2025.122421
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125000837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    2. Zhang, Zhiguo & Zhao, Dan & Ni, Siliang & Sun, Yuze & Wang, Bing & Chen, Yong & Li, Guoneng & Li, S., 2019. "Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor," Applied Energy, Elsevier, vol. 235(C), pages 463-472.
    3. Wang, Yu & Pan, Jianfeng & Wang, Junfeng & Lu, Qingbo & Liu, Yangxian & Quaye, Evans K., 2021. "The characteristics of methane/oxygen premixed flame dynamics in a meso-scale reactor under fuel rich condition," Energy, Elsevier, vol. 232(C).
    4. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    5. Alipoor, Alireza & Mazaheri, Kiumars, 2020. "Maps of flame dynamics for premixed lean hydrogen-air combustion in a heated microchannel," Energy, Elsevier, vol. 194(C).
    6. Zhao, He & Li, Guoneng & Zhao, Dan & Zhang, Zhiguo & Sun, Dakun & Yang, Wenming & Li, Shen & Lu, Zhengli & Zheng, Youqu, 2017. "Experimental study of equivalence ratio and fuel flow rate effects on nonlinear thermoacoustic instability in a swirl combustor," Applied Energy, Elsevier, vol. 208(C), pages 123-131.
    7. Akhtar, Saad & Kurnia, Jundika C. & Shamim, Tariq, 2015. "A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application," Applied Energy, Elsevier, vol. 152(C), pages 47-57.
    8. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    9. Gao, Lingjie & Tang, Aikun & Cai, Tao & Tenkolu, Getachew Alemu, 2024. "Experimental analysis and multi-objective optimization of flame dynamics and combustion performance in methane-fueled slit-type combustors," Applied Energy, Elsevier, vol. 355(C).
    10. Liu, Zeqi & Liu, Wanhao & Du, Yiqing & Fan, Aiwu, 2024. "Experimental study on the propagation characteristics of non-premixed H2/air flames in a curved micro-combustor," Energy, Elsevier, vol. 299(C).
    11. Zuo, Wei & Li, Dexin & E, Jiaqiang & Xia, Yongfang & Li, Qingqing & Quan, Yifan & Zhang, Guangde, 2023. "Parametric study of cavity on the performance of a hydrogen-fueled micro planar combustor for thermophotovoltaic applications," Energy, Elsevier, vol. 263(PD).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Churong & Zuo, Wei & Li, Qingqing & Zhou, Kun & Huang, Yuhan & Zhang, Guangde & E, Jiaqiang, 2024. "Energy conversion efficiency improvement studies on the hydrogen-fueled micro planar combustor with multi-baffles for thermophotovoltaic applications," Energy, Elsevier, vol. 313(C).
    2. Tang, Aikun & Cai, Tao & Li, Chong & Zhou, Chen & Gao, Lingjie, 2024. "Flame visualization and spectral analysis of combustion instability in a premixed methane/air-fueled micro-combustor," Energy, Elsevier, vol. 294(C).
    3. Zhao, He & Zhao, Dan & Becker, Sid & Rong, Hui & Zhao, Xiaohuan, 2023. "Entropy generation and improved thermal performance investigation on a hydrogen-fuelled double-channel microcombustor with Y-shaped internal fins," Energy, Elsevier, vol. 283(C).
    4. Zuo, Wei & Wang, Zijie & Li, Qingqing & Zhou, Kun & Huang, Yuhan, 2024. "Numerical investigations on the performance enhancement of a hydrogen-fueled micro planar combustor with finned bluff body for thermophotovoltaic applications," Energy, Elsevier, vol. 293(C).
    5. Wei, Depeng & Peng, Qingguo & Yin, Ruixue & Wang, Hao & Tian, Xinghua & Yan, Feng & Fu, Guang, 2024. "Optimizing micro power generation with blended fuels and porous media for H2-fueled combustion," Renewable Energy, Elsevier, vol. 233(C).
    6. Zuo, Wei & Chen, Zhijie & E, Jiaqiang & Li, Qingqing & Zhang, Guangde & Huang, Yuhan, 2023. "Effects of structure parameters of tube outlet on the performance of a hydrogen-fueled micro planar combustor for thermophotovoltaic applications," Energy, Elsevier, vol. 266(C).
    7. Li, Jintao & E, Jiaqiang & Ding, Jiangjun & Cai, Lei & Luo, Bo, 2024. "Effect analysis on the low-temperature preheating performance of a novel micro-combustor air preheater for the cold start of the Li-ion battery packs," Energy, Elsevier, vol. 312(C).
    8. Luo, Bo & E, Jiaqiang & Chen, Jingwei & Zhang, Feng & Ding, Jiangjun, 2024. "Effect of NH3/H2/O2 premixed combustion on energy conversion enhancement and NOx emission reduction of the segmented nozzle micro-combustor in thermophotovoltaic system," Renewable Energy, Elsevier, vol. 228(C).
    9. Cai, Tao & Gao, Lingjie & Tang, Aikun & Tenkolu, Getachew Alemu, 2024. "Experimental evaluation and mechanism analysis of combustion performance enhancement in composite wall-assisted methane/air mixtures," Energy, Elsevier, vol. 313(C).
    10. Tang, Shihao & Wei, Jia & Xie, Bo & Shi, Zhiwei & Wang, Hao & Tian, Xinghua & He, Biao & Peng, Qingguo, 2023. "Experimental and numerical investigation on H2-fueled thermophotovoltaic micro tube with multi-cavity," Energy, Elsevier, vol. 274(C).
    11. Yang, Xiao & Yang, Wenming & Dong, Shikui & Tan, Heping, 2020. "Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor," Energy, Elsevier, vol. 209(C).
    12. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    13. Zuo, Wei & Wang, Zijie & E, Jiaqiang & Li, Qingqing & Cheng, Qianju & Wu, Yinkun & Zhou, Kun, 2023. "Numerical investigations on the performance of a hydrogen-fueled micro planar combustor with tube outlet for thermophotovoltaic applications," Energy, Elsevier, vol. 263(PC).
    14. Teng, Peng & Peng, Qingguo & Zhang, Long & Yin, Ruixue & Tian, Xinghua & Wang, Hao & Huang, Zhixin, 2024. "Experimental and numerical investigations on NH3/H2 fueled combustion in the combustor with block for improved micro power generation," Energy, Elsevier, vol. 313(C).
    15. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    16. Liu, Shaojie & Wang, Zhaohui & Yang, Dong & Wang, Yichen & Wang, Yongdong & Li, Donghai & Zhu, Min, 2025. "Robust frequency response-based active disturbance rejection control to mitigate thermoacoustic instability in the Rijke tube burner," Applied Energy, Elsevier, vol. 378(PA).
    17. Zhao, He & Zhao, Dan & Sun, Dakun & Semlitsch, Bernhard, 2024. "Electrical power, energy efficiency, NO and CO emissions investigations of an ammonia/methane-fueled micro-thermal photovoltaic system with a reduced chemical reaction mechanism," Energy, Elsevier, vol. 305(C).
    18. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    19. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    20. Liaoliao Li & Yuze Sun & Xinyu Huang & Lixian Guo & Xinyu Zhao, 2025. "Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration," Energies, MDPI, vol. 18(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.