IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v215y2018icp300-308.html
   My bibliography  Save this article

Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment

Author

Listed:
  • Fanciulli, C.
  • Abedi, H.
  • Merotto, L.
  • Dondè, R.
  • De Iuliis, S.
  • Passaretti, F.

Abstract

In recent years, the portable technology is receiving a great interest and significant improvement due to the progresses in electronic technology development and energy storage solutions. The decrease in power requirements for working energy systems, due to the increased efficiency and to the reduction in components size, opens the access to new solutions for power supplying. In particular, alternative backup systems for battery charging or replacement could be designed taking advantage of unconventional technologies. It is the case of small photovoltaic portable panels or fuel cells technology: in these solutions different sources are used to produce limited electrical powers required to keep devices on. In this paper, a thermoelectric solution for the power generation has been considered: the generator has been designed and assembled starting from a catalytic combustor. Catalytic combustion allows safe control of the processes, and the choice of a hydrocarbon fuel ensures the power availability and a fast recharge. The size of the system is set to fit a volume close to the one of AA batteries. The electrical power output obtained is close to 1 W with a cold side temperature below 40 °C. The limited values of these physical parameters allow obtaining a portable and safe device. The generator has been fully characterized in different ranges of fuel flow rates and the performances have been thoroughly analysed for processes optimization and efficiency improvement.

Suggested Citation

  • Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
  • Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:300-308
    DOI: 10.1016/j.apenergy.2018.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merotto, L. & Fanciulli, C. & Dondè, R. & De Iuliis, S., 2016. "Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor," Applied Energy, Elsevier, vol. 162(C), pages 346-353.
    2. Kinsella, C.E. & O’Shaughnessy, S.M. & Deasy, M.J. & Duffy, M. & Robinson, A.J., 2014. "Battery charging considerations in small scale electricity generation from a thermoelectric module," Applied Energy, Elsevier, vol. 114(C), pages 80-90.
    3. Aranguren, P. & Astrain, D. & Rodríguez, A. & Martínez, A., 2015. "Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber," Applied Energy, Elsevier, vol. 152(C), pages 121-130.
    4. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    5. Tolmachoff, Erik D. & Allmon, William & Waits, C. Mike, 2014. "Analysis of a high throughput n-dodecane fueled heterogeneous/homogeneous parallel plate microreactor for portable power conversion," Applied Energy, Elsevier, vol. 128(C), pages 111-118.
    6. Walker, Michael E. & Theregowda, Ranjani B. & Safari, Iman & Abbasian, Javad & Arastoopour, Hamid & Dzombak, David A. & Hsieh, Ming-Kai & Miller, David C., 2013. "Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling," Energy, Elsevier, vol. 60(C), pages 139-147.
    7. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2014. "Combustion of propane with Pt and Rh catalysts in a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 130(C), pages 350-356.
    8. Vijayan, V. & Gupta, A.K., 2010. "Flame dynamics of a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 87(12), pages 3718-3728, December.
    9. Vijayan, V. & Gupta, A.K., 2010. "Combustion and heat transfer at meso-scale with thermal recuperation," Applied Energy, Elsevier, vol. 87(8), pages 2628-2639, August.
    10. Shirsat, V. & Gupta, A.K., 2011. "A review of progress in heat recirculating meso-scale combustors," Applied Energy, Elsevier, vol. 88(12), pages 4294-4309.
    11. Hsiao, Y.Y. & Chang, W.C. & Chen, S.L., 2010. "A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine," Energy, Elsevier, vol. 35(3), pages 1447-1454.
    12. Chou, S.K. & Yang, W.M. & Chua, K.J. & Li, J. & Zhang, K.L., 2011. "Development of micro power generators - A review," Applied Energy, Elsevier, vol. 88(1), pages 1-16, January.
    13. Xiao, Heng & Qiu, Kuanrong & Gou, Xiaolong & Ou, Qiang, 2013. "A flameless catalytic combustion-based thermoelectric generator for powering electronic instruments on gas pipelines," Applied Energy, Elsevier, vol. 112(C), pages 1161-1165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    2. Elghool, Ali & Basrawi, Firdaus & Ibrahim, Thamir Khalil & Ibrahim, Hassan & Ishak, M. & Hazwan bin Yusof, Mohd & Bagaber, Salem Abdullah, 2020. "Multi-objective optimization to enhance the performance of thermo-electric generator combined with heat pipe-heat sink under forced convection," Energy, Elsevier, vol. 208(C).
    3. Aravind, B. & Hiranandani, Karan & Kumar, Sudarshan, 2020. "Development of an ultra-high capacity hydrocarbon fuel based micro thermoelectric power generator," Energy, Elsevier, vol. 206(C).
    4. Zhu, Xingzhuang & Zuo, Zhengxing & Wang, Wei & Jia, Boru & Zhan, Tianzhuo, 2023. "Experimental research and optimization of a thermoelectric generator excited by pulsed combustion mode under limited heat dissipation for combined heat and power supply," Applied Energy, Elsevier, vol. 349(C).
    5. Junjie Chen & Longfei Yan & Wenya Song & Deguang Xu, 2018. "Catalytic Oxidation of Synthesis Gas on Platinum at Low Temperatures for Power Generation Applications," Energies, MDPI, vol. 11(6), pages 1-24, June.
    6. Li, Guoneng & Zhu, Zhihao & Zheng, Youqu & Guo, Wenwen & Tang, Yuanjun & Ye, Chao, 2023. "Experiments on a powerful, ultra-clean, and low-noise-level swirl-combustion-powered micro thermoelectric generator," Energy, Elsevier, vol. 263(PB).
    7. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    9. Bhanuprakash Reddy Guggilla & Jack Perelman Camins & Benjamin Taylor & Smitesh Bakrania, 2021. "Examining Thermal Management Strategies for a Microcombustion Power Device," Energies, MDPI, vol. 14(19), pages 1-14, October.
    10. Hiranandani, Karan & Aravind, B. & Ratna Kishore, V. & Kumar, Sudarshan, 2020. "Development of a numerical model for performance prediction of an integrated microcombustor-thermoelectric power generator," Energy, Elsevier, vol. 192(C).
    11. Abedi, H. & Migliorini, F. & Dondè, R. & De Iuliis, S. & Passaretti, F. & Fanciulli, C., 2019. "Small size thermoelectric power supply for battery backup," Energy, Elsevier, vol. 188(C).
    12. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    13. Guggilla, Bhanuprakash Reddy & Rusted, Alexander & Bakrania, Smitesh, 2019. "Platinum nanoparticle catalysis of methanol for thermoelectric power generation," Applied Energy, Elsevier, vol. 237(C), pages 155-162.
    14. Li, Guoneng & Zheng, Youqu & Guo, Wenwen & Zhu, Dongya & Tang, Yuanjun, 2020. "Mesoscale combustor-powered thermoelectric generator: Experimental optimization and evaluation metrics," Applied Energy, Elsevier, vol. 272(C).
    15. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    16. Zhao, Zhengyang & Wang, Wei & Zuo, Zhengxing & Kuang, Nianling, 2022. "Investigation on the flame characteristics of premixed propane/air in a micro opposed flow porous combustor," Energy, Elsevier, vol. 238(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merotto, L. & Fanciulli, C. & Dondè, R. & De Iuliis, S., 2016. "Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor," Applied Energy, Elsevier, vol. 162(C), pages 346-353.
    2. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    3. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    4. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    5. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    6. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    7. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    8. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    9. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    10. Akhtar, Saad & Kurnia, Jundika C. & Shamim, Tariq, 2015. "A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application," Applied Energy, Elsevier, vol. 152(C), pages 47-57.
    11. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    12. Bhanuprakash Reddy Guggilla & Jack Perelman Camins & Benjamin Taylor & Smitesh Bakrania, 2021. "Examining Thermal Management Strategies for a Microcombustion Power Device," Energies, MDPI, vol. 14(19), pages 1-14, October.
    13. Akhtar, Saad & Khan, Mohammed N. & Kurnia, Jundika C. & Shamim, Tariq, 2017. "Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications," Applied Energy, Elsevier, vol. 192(C), pages 134-145.
    14. Aravind, B. & Hiranandani, Karan & Kumar, Sudarshan, 2020. "Development of an ultra-high capacity hydrocarbon fuel based micro thermoelectric power generator," Energy, Elsevier, vol. 206(C).
    15. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    16. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    17. Gurunadh Velidi & Chun Sang Yoo, 2023. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges," Energies, MDPI, vol. 16(9), pages 1-44, May.
    18. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2014. "Performance of synthetic jet fuels in a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 118(C), pages 41-47.
    19. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    20. Liu, Yi-Hua & Chiu, Yi-Hsun & Huang, Jia-Wei & Wang, Shun-Chung, 2016. "A novel maximum power point tracker for thermoelectric generation system," Renewable Energy, Elsevier, vol. 97(C), pages 306-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:215:y:2018:i:c:p:300-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.