IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v272y2020ics0306261920307467.html
   My bibliography  Save this article

Mesoscale combustor-powered thermoelectric generator: Experimental optimization and evaluation metrics

Author

Listed:
  • Li, Guoneng
  • Zheng, Youqu
  • Guo, Wenwen
  • Zhu, Dongya
  • Tang, Yuanjun

Abstract

The recent development of potable power sources is of considerable interest. A mesoscale combustor-powered thermoelectric generator integrated with a mesoscale stagnation-point reverse-flow combustor and a built-in heat exchanger was designed and optimized in this work to augment electric power and overall efficiency. The mesoscale combustor can run at a volumetric heat load of 72 MW/m3. The thickness of heat spreader, input power, equivalent ratio, fuel types, and heat exchanger channel types were explored to optimize the system performance. The optimized electric power of 30.7 W obtained at an overall efficiency of 3.21% was larger than the previous record of 18.1 W at an overall efficiency of 3.01% in 2015. The proposed thermoelectric generator, which was conducted with 13.2 kg of methane, reached an energy density of 300 Wh/kg. The novel design provided a concrete way to solve the contradiction between the availability of Bi2Te3-based thermoelectric module and its relatively low working temperature. Additionally, a new metrics, which is defined as (EFS/efTE,max) at Pin, was firstly proposed to evaluate various thermoelectric generators, in which different thermoelectric materials, combustion types, and input powers could be involved. The proposed metrics correlates the overall, running thermoelectric, maximum thermoelectric, combustion (reaction), and heat collection efficiencies under different input powers. The power of this metrics was comprehensively discussed by deducing the running thermoelectric efficiencies of various previous works and presenting the performance comparisons of different previous thermoelectric generators. The obtained metrics, that is, (75.9%/4.23%) at 957 W in this work was higher than those in previous studies.

Suggested Citation

  • Li, Guoneng & Zheng, Youqu & Guo, Wenwen & Zhu, Dongya & Tang, Yuanjun, 2020. "Mesoscale combustor-powered thermoelectric generator: Experimental optimization and evaluation metrics," Applied Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307467
    DOI: 10.1016/j.apenergy.2020.115234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merotto, L. & Fanciulli, C. & Dondè, R. & De Iuliis, S., 2016. "Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor," Applied Energy, Elsevier, vol. 162(C), pages 346-353.
    2. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    3. Chang, Yafei & Qin, Yanzhou & Yin, Yan & Zhang, Junfeng & Li, Xianguo, 2018. "Humidification strategy for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 230(C), pages 643-662.
    4. Falcão, D.S. & Oliveira, V.B. & Rangel, C.M. & Pinto, A.M.F.R., 2014. "Review on micro-direct methanol fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 58-70.
    5. Guggilla, Bhanuprakash Reddy & Rusted, Alexander & Bakrania, Smitesh, 2019. "Platinum nanoparticle catalysis of methanol for thermoelectric power generation," Applied Energy, Elsevier, vol. 237(C), pages 155-162.
    6. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    7. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    8. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    9. Chou, S.K. & Yang, W.M. & Chua, K.J. & Li, J. & Zhang, K.L., 2011. "Development of micro power generators - A review," Applied Energy, Elsevier, vol. 88(1), pages 1-16, January.
    10. Qiu, K. & Hayden, A.C.S., 2012. "Development of a novel cascading TPV and TE power generation system," Applied Energy, Elsevier, vol. 91(1), pages 304-308.
    11. B. Hinterleitner & I. Knapp & M. Poneder & Yongpeng Shi & H. Müller & G. Eguchi & C. Eisenmenger-Sittner & M. Stöger-Pollach & Y. Kakefuda & N. Kawamoto & Q. Guo & T. Baba & T. Mori & Sami Ullah & Xin, 2019. "Thermoelectric performance of a metastable thin-film Heusler alloy," Nature, Nature, vol. 576(7785), pages 85-90, December.
    12. Abedi, H. & Migliorini, F. & Dondè, R. & De Iuliis, S. & Passaretti, F. & Fanciulli, C., 2019. "Small size thermoelectric power supply for battery backup," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azeez mohammed Hussein, Hind & Zulkifli, Rozli & Faizal Bin Wan Mahmood, Wan Mohd & Ajeel, Raheem K., 2022. "Structure parameters and designs and their impact on performance of different heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Li, Guoneng & Zhu, Zhihao & Zheng, Youqu & Guo, Wenwen & Tang, Yuanjun & Ye, Chao, 2023. "Experiments on a powerful, ultra-clean, and low-noise-level swirl-combustion-powered micro thermoelectric generator," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    2. Li, Guoneng & Zhu, Zhihao & Zheng, Youqu & Guo, Wenwen & Tang, Yuanjun & Ye, Chao, 2023. "Experiments on a powerful, ultra-clean, and low-noise-level swirl-combustion-powered micro thermoelectric generator," Energy, Elsevier, vol. 263(PB).
    3. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    4. Aravind, B. & Hiranandani, Karan & Kumar, Sudarshan, 2020. "Development of an ultra-high capacity hydrocarbon fuel based micro thermoelectric power generator," Energy, Elsevier, vol. 206(C).
    5. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Bhanuprakash Reddy Guggilla & Jack Perelman Camins & Benjamin Taylor & Smitesh Bakrania, 2021. "Examining Thermal Management Strategies for a Microcombustion Power Device," Energies, MDPI, vol. 14(19), pages 1-14, October.
    7. Zhu, Xingzhuang & Zuo, Zhengxing & Wang, Wei & Jia, Boru & Zhan, Tianzhuo, 2023. "Experimental research and optimization of a thermoelectric generator excited by pulsed combustion mode under limited heat dissipation for combined heat and power supply," Applied Energy, Elsevier, vol. 349(C).
    8. Hiranandani, Karan & Aravind, B. & Ratna Kishore, V. & Kumar, Sudarshan, 2020. "Development of a numerical model for performance prediction of an integrated microcombustor-thermoelectric power generator," Energy, Elsevier, vol. 192(C).
    9. Abedi, H. & Migliorini, F. & Dondè, R. & De Iuliis, S. & Passaretti, F. & Fanciulli, C., 2019. "Small size thermoelectric power supply for battery backup," Energy, Elsevier, vol. 188(C).
    10. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    11. Xie, Bo & Peng, Qingguo & Yang, Wenming & Li, Shaobo & E, Jiaqiang & Li, Zhenwei & Tao, Meng & Zhang, Ansi, 2022. "Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic," Energy, Elsevier, vol. 239(PD).
    12. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    13. Vinay Sankar & Sreejith Sudarsanan & Sudipto Mukhopadhyay & Prabhu Selvaraj & Aravind Balakrishnan & Ratna Kishore Velamati, 2023. "Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application—A Review," Energies, MDPI, vol. 16(10), pages 1-41, May.
    14. Jalal Zarvandi & Mohammadreza Baigmohammadi & Sadegh Tabejamaat, 2021. "A Numerical Study on the Effects of the Geometry and Location of an Inserted Wire on Methane–Air Flames in a Micro–Burner," Energies, MDPI, vol. 15(1), pages 1-11, December.
    15. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    16. Elghool, Ali & Basrawi, Firdaus & Ibrahim, Thamir Khalil & Ibrahim, Hassan & Ishak, M. & Hazwan bin Yusof, Mohd & Bagaber, Salem Abdullah, 2020. "Multi-objective optimization to enhance the performance of thermo-electric generator combined with heat pipe-heat sink under forced convection," Energy, Elsevier, vol. 208(C).
    17. Ferrari, Claudio & Melino, Francesco & Pinelli, Michele & Spina, Pier Ruggero, 2014. "Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences," Applied Energy, Elsevier, vol. 113(C), pages 1717-1730.
    18. Zhang, Chao & Tang, Liangliang & Liu, Yan & Liu, Zhuming & Liu, Wei & Qiu, Kuanrong, 2020. "A novel thermophotovoltaic optical cavity for improved irradiance uniformity and system performance," Energy, Elsevier, vol. 195(C).
    19. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    20. Habibi, Mohammad & Cui, Longji, 2023. "Modelling and performance analysis of a novel thermophotovoltaic system with enhanced radiative heat transfer for combined heat and power generation," Applied Energy, Elsevier, vol. 343(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.