IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224000781.html
   My bibliography  Save this article

Overall numerical simulation of chemical-thermal-electric conversion for an all-in-one thermoelectric generator based on micro scale combustion

Author

Listed:
  • He, Ziqiang
  • You, Jingxiang
  • Kang, Dugang
  • Zou, Qunfeng
  • Zhang, Wenxiang
  • Zhang, Zhien

Abstract

Micro combustion-based power systems have garnered significant attention owing to their high energy density and portability. This work presents a numerical simulation process for an integrated thermoelectric generator based on micro-combustion, which can track the chemical-thermal-electro energy conversion. The combustion performance, thermal characteristics and energy conversion for the micro-thermoelectric generator (MTEG) system are investigated. A range of equivalence ratios and Reynolds numbers (Re) is examined to provide a detailed analysis. With the increment of equivalence ratio (φ), both the energy output and the open-circuit voltage of the system significantly increase. At high φ, the voltage and energy output exhibit a growth tendency when the Re number increases. Conversely, at low φ, the voltage and energy output decrease at higher Re number. The maximum voltage of 0.264 V is achieved when φ = 1.0 and Re = 1500, while the system delivers an energy output of 1.87 W.

Suggested Citation

  • He, Ziqiang & You, Jingxiang & Kang, Dugang & Zou, Qunfeng & Zhang, Wenxiang & Zhang, Zhien, 2024. "Overall numerical simulation of chemical-thermal-electric conversion for an all-in-one thermoelectric generator based on micro scale combustion," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224000781
    DOI: 10.1016/j.energy.2024.130307
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224000781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.