IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v61y2013icp150-157.html
   My bibliography  Save this article

Combustion characteristics of a small-scale combustor with a percolated platinum emitter tube for thermophotovoltaics

Author

Listed:
  • Li, Yueh-Heng
  • Chen, Guan-Bang
  • Cheng, Tsarng-Sheng
  • Yeh, Yean-Ling
  • Chao, Yei-Chin

Abstract

A small-scale combustor is one of the most important components in developing the small-scale thermophotovoltaic (TPV) power systems. In order to enhance the flame stabilization and to have a bright incandescent emitter, a platinum tube is used to serve as an emitter. However, a bright incandescent emitter is limited by the operating range of flow velocity and fuel concentration. In the present study, a novel combustion chamber design is proposed to overcome the critical heat loss and flame instability by using a percolated platinum tube as catalyst, emitter, and flame stabilizer. Besides, approaches of delivering fuel/air mixture inside and outside of the catalyst tube can meliorate the heat loss from the chamber wall. Experimental methodology is performed to verify the performance of the proposed percolated-platinum combustor as compared to a plain platinum combustor. In the plain platinum tube the flame only can be stabilized on the backward-facing step inside the tube, but in the percolated platinum tube the flame can be stabilized on the percolated hole inner and outer the tube. It appears that the catalytically induced combustion could be anchored on the percolated-platinum combustor in various conditions of fuel/air distribution and inlet flow velocity, and in the meantime could heat up the chamber wall to incandescent condition. Concept, design, and demonstration of the combustor are addressed and discussed in the paper.

Suggested Citation

  • Li, Yueh-Heng & Chen, Guan-Bang & Cheng, Tsarng-Sheng & Yeh, Yean-Ling & Chao, Yei-Chin, 2013. "Combustion characteristics of a small-scale combustor with a percolated platinum emitter tube for thermophotovoltaics," Energy, Elsevier, vol. 61(C), pages 150-157.
  • Handle: RePEc:eee:energy:v:61:y:2013:i:c:p:150-157
    DOI: 10.1016/j.energy.2013.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213007548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khu, Kerwin & Jiang, Liudi & Markvart, Tom, 2011. "Effect of finite heat input on the power performance of micro heat engines," Energy, Elsevier, vol. 36(5), pages 2686-2692.
    2. Zarvandi, Jalal & Tabejamaat, Sadegh & Baigmohammadi, Mohammadreza, 2012. "Numerical study of the effects of heat transfer methods on CH4/(CH4 + H2)-AIR pre-mixed flames in a micro-stepped tube," Energy, Elsevier, vol. 44(1), pages 396-409.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yueh-Heng & Chen, Guan-Bang & Wu, Fang-Hsien & Hsieh, Hsiu-Feng & Chao, Yei-Chin, 2016. "Effects of carbon dioxide in oxy-fuel atmosphere on catalytic combustion in a small-scale channel," Energy, Elsevier, vol. 94(C), pages 766-774.
    2. Khan, Mohammed Asad & Gadgil, Hrishikesh & Kumar, Sudarshan, 2019. "Influence of liquid properties on atomization characteristics of flow-blurring injector at ultra-low flow rates," Energy, Elsevier, vol. 171(C), pages 1-13.
    3. Li, Linhong & Yang, Guangyao & Fan, Aiwu, 2021. "Non-premixed combustion characteristics and thermal performance of a catalytic combustor for micro-thermophotovoltaic systems," Energy, Elsevier, vol. 214(C).
    4. Um, Dong Hyun & Kim, Tae Young & Kwon, Oh Chae, 2014. "Power and hydrogen production from ammonia in a micro-thermophotovoltaic device integrated with a micro-reformer," Energy, Elsevier, vol. 73(C), pages 531-542.
    5. Xiang, Ying & Yuan, Zili & Wang, Shixuan & Fan, Aiwu, 2019. "Effects of flow rate and fuel/air ratio on propagation behaviors of diffusion H2/air flames in a micro-combustor," Energy, Elsevier, vol. 179(C), pages 315-322.
    6. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    7. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    8. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    9. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    10. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    11. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.
    12. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    13. Kim, Tae Young & Kim, Hee Kyung & Ku, Jae Won & Kwon, Oh Chae, 2017. "A heat-recirculating combustor with multiple injectors for thermophotovoltaic power conversion," Applied Energy, Elsevier, vol. 193(C), pages 174-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baigmohammadi, Mohammadreza & Sarrafan Sadeghi, Soroush & Tabejamaat, Sadegh & Zarvandi, Jalal, 2013. "Numerical study of the effects of wire insertion on CH4(methane)/AIR pre-mixed flame in a micro combustor," Energy, Elsevier, vol. 54(C), pages 271-284.
    2. Rana, Uttam & Chakraborty, Suman & Som, S.K., 2014. "Thermodynamics of premixed combustion in a heat recirculating micro combustor," Energy, Elsevier, vol. 68(C), pages 510-518.
    3. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
    4. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    5. Su, Shanhe & Guo, Juncheng & Su, Guozhen & Chen, Jincan, 2012. "Performance optimum analysis and load matching of an energy selective electron heat engine," Energy, Elsevier, vol. 44(1), pages 570-575.
    6. Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Zarvandi, Jalal, 2015. "Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body," Energy, Elsevier, vol. 85(C), pages 117-144.
    7. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    8. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    9. Zarvandi, Jalal & Tabejamaat, Sadegh & Baigmohammadi, Mohammadreza, 2012. "Numerical study of the effects of heat transfer methods on CH4/(CH4 + H2)-AIR pre-mixed flames in a micro-stepped tube," Energy, Elsevier, vol. 44(1), pages 396-409.
    10. Wan, Jianlong & Zhao, Haibo, 2017. "Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 139(C), pages 366-379.
    11. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    12. Alipoor, Alireza & Mazaheri, Kiumars, 2014. "Studying the repetitive extinction-ignition dynamics for lean premixed hydrogen-air combustion in a heated microchannel," Energy, Elsevier, vol. 73(C), pages 367-379.
    13. Veeraragavan, Ananthanarayanan, 2015. "On flame propagation in narrow channels with enhanced wall thermal conduction," Energy, Elsevier, vol. 93(P1), pages 631-640.
    14. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    15. Shamshiri, Mehdi & Khazaeli, Reza & Ashrafizaadeh, Mahmud & Mortazavi, Saeed, 2012. "Heat transfer and entropy generation analyses associated with mixed electrokinetically induced and pressure-driven power-law microflows," Energy, Elsevier, vol. 42(1), pages 157-169.
    16. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Wan, Jianlong & Zhao, Haibo, 2018. "Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 157(C), pages 448-459.
    18. Yilmaz, Harun & Cam, Omer & Yilmaz, Ilker, 2017. "Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames," Energy, Elsevier, vol. 135(C), pages 585-597.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:61:y:2013:i:c:p:150-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.