IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3201-d1114015.html
   My bibliography  Save this article

A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects

Author

Listed:
  • Zhuang Kang

    (School of Mechanical Engineering, Guizhou University, Guiyang 550025, China)

  • Zhiwei Shi

    (Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China)

  • Jiahao Ye

    (School of Mechanical Engineering, Guizhou University, Guiyang 550025, China)

  • Xinghua Tian

    (School of Mechanical Engineering, Guizhou University, Guiyang 550025, China)

  • Zhixin Huang

    (Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China)

  • Hao Wang

    (School of Mechanical Engineering, Guizhou University, Guiyang 550025, China)

  • Depeng Wei

    (School of Mechanical Engineering, Guizhou University, Guiyang 550025, China)

  • Qingguo Peng

    (School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
    Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China)

  • Yaojie Tu

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Micro burner is the fundamental element of a micro energy power system. The performance, output power, and efficiency of the system are directly involved by the combustion stability, efficiency, and temperature distribution of the exterior wall. Owing to the small combustion space of the micro burner and the resident short time of the premixed fuel/air, the fuel is difficult to burn completely, resulting in poor burning efficiency and flame stability. Therefore, the study of micro burner technology is the focus of current research to improve combustion performance. This article introduces the micro power system, micro combustion technology, and combustion status and characteristics, focusing on four kinds of micro combustion technology. The purpose is tantamount to fully understand the current status of micro combustion technology and compare the characteristics of different combustion technologies. For improving output power and efficiency of the power system, the combustion stability and performance are enhanced, which provides theoretical support for the effective realization of micro scale combustion and application.

Suggested Citation

  • Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3201-:d:1114015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feldmeier, Sabine & Schwarz, Markus & Wopienka, Elisabeth & Pfeifer, Christoph, 2021. "Categorization of small-scale biomass combustion appliances by characteristic numbers," Renewable Energy, Elsevier, vol. 163(C), pages 2128-2136.
    2. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    3. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.
    4. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    5. Akhtar, Saad & Khan, Mohammed N. & Kurnia, Jundika C. & Shamim, Tariq, 2017. "Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications," Applied Energy, Elsevier, vol. 192(C), pages 134-145.
    6. Li, Linhong & Yang, Guangyao & Fan, Aiwu, 2021. "Non-premixed combustion characteristics and thermal performance of a catalytic combustor for micro-thermophotovoltaic systems," Energy, Elsevier, vol. 214(C).
    7. Yilmaz, Harun & Cam, Omer & Yilmaz, Ilker, 2017. "Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames," Energy, Elsevier, vol. 135(C), pages 585-597.
    8. Akhtar, Saad & Piffaretti, Stefano & Shamim, Tariq, 2018. "Numerical investigation of flame structure and blowout limit for lean premixed turbulent methane-air flames under high pressure conditions," Applied Energy, Elsevier, vol. 228(C), pages 21-32.
    9. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    10. Alipoor, Alireza & Saidi, Mohammad Hassan, 2017. "Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator," Applied Energy, Elsevier, vol. 199(C), pages 382-399.
    11. Akhtar, Saad & Kurnia, Jundika C. & Shamim, Tariq, 2015. "A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application," Applied Energy, Elsevier, vol. 152(C), pages 47-57.
    12. Tan, Dongli & Wu, Yao & Lv, Junshuai & Li, Jian & Ou, Xiaoyu & Meng, Yujun & Lan, Guanglin & Chen, Yanhui & Zhang, Zhiqing, 2023. "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," Energy, Elsevier, vol. 263(PC).
    13. Shirsat, V. & Gupta, A.K., 2011. "A review of progress in heat recirculating meso-scale combustors," Applied Energy, Elsevier, vol. 88(12), pages 4294-4309.
    14. Li, Yueh-Heng & Chen, Guan-Bang & Cheng, Tsarng-Sheng & Yeh, Yean-Ling & Chao, Yei-Chin, 2013. "Combustion characteristics of a small-scale combustor with a percolated platinum emitter tube for thermophotovoltaics," Energy, Elsevier, vol. 61(C), pages 150-157.
    15. Fumey, B. & Buetler, T. & Vogt, U.F., 2018. "Ultra-low NOx emissions from catalytic hydrogen combustion," Applied Energy, Elsevier, vol. 213(C), pages 334-342.
    16. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    17. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    18. Fan, Aiwu & Zhang, He & Wan, Jianlong, 2017. "Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body," Energy, Elsevier, vol. 123(C), pages 252-259.
    19. Chou, S.K. & Yang, W.M. & Li, J. & Li, Z.W., 2010. "Porous media combustion for micro thermophotovoltaic system applications," Applied Energy, Elsevier, vol. 87(9), pages 2862-2867, September.
    20. Chou, S.K. & Yang, W.M. & Chua, K.J. & Li, J. & Zhang, K.L., 2011. "Development of micro power generators - A review," Applied Energy, Elsevier, vol. 88(1), pages 1-16, January.
    21. Peng, Qingguo & Jiaqiang, E & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Zhang, Feng & Meng, Tian & Qiu, Runzhi, 2019. "Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses," Energy, Elsevier, vol. 173(C), pages 540-547.
    22. Ye, Jiahao & Peng, Qingguo, 2023. "Improved emissions conversion of diesel oxidation catalyst using multifactor impact analysis and neural network," Energy, Elsevier, vol. 271(C).
    23. Hu, Lin & Tian, Qingtao & Zou, Changfu & Huang, Jing & Ye, Yao & Wu, Xianhui, 2022. "A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    24. Namazi, Mohammadmehdi & Nayebi, Mohammadreza & Isazadeh, Amin & Modarresi, Ali & Marzbali, Iman Ghasemi & Hosseinalipour, Seyed Mostafa, 2022. "Experimental and numerical study of catalytic combustion and pore-scale numerical study of mass diffusion in high porosity fibrous porous media," Energy, Elsevier, vol. 238(PB).
    25. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    26. Pan, J.F. & Wu, D. & Liu, Y.X. & Zhang, H.F. & Tang, A.K. & Xue, H., 2015. "Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor," Applied Energy, Elsevier, vol. 160(C), pages 802-807.
    27. Rana, Uttam & Chakraborty, Suman & Som, S.K., 2014. "Thermodynamics of premixed combustion in a heat recirculating micro combustor," Energy, Elsevier, vol. 68(C), pages 510-518.
    28. Nemitallah, Medhat A. & Kewlani, Gaurav & Hong, Seunghyuck & Shanbhogue, Santosh J. & Habib, Mohamed A. & Ghoniem, Ahmed F., 2016. "Investigation of a turbulent premixed combustion flame in a backward-facing step combustor; effect of equivalence ratio," Energy, Elsevier, vol. 95(C), pages 211-222.
    29. Yang, Wenming & Chou, Siawkiang & Chua, Kianjon & An, Hui & Karthikeyan, Kumarasamy & Zhao, Xing, 2012. "An advanced micro modular combustor-radiator with heat recuperation for micro-TPV system application," Applied Energy, Elsevier, vol. 97(C), pages 749-753.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    2. David M. Dias & Pedro R. Resende & Alexandre M. Afonso, 2024. "A Review on Micro-Combustion Flame Dynamics and Micro-Propulsion Systems," Energies, MDPI, vol. 17(6), pages 1-35, March.
    3. Wang, Hao & Peng, Qingguo & Tian, Xinghua & Yan, Feng & Wei, Depeng & Liu, Hui, 2024. "Experimental and numerical investigation on H2-fueled micro-thermophotovoltaic with CH4 and C3H8 blending in a tube fully/partially inserted porous media," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
    2. Tang, Shihao & Wei, Jia & Xie, Bo & Shi, Zhiwei & Wang, Hao & Tian, Xinghua & He, Biao & Peng, Qingguo, 2023. "Experimental and numerical investigation on H2-fueled thermophotovoltaic micro tube with multi-cavity," Energy, Elsevier, vol. 274(C).
    3. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).
    4. Xie, Bo & Peng, Qingguo & Yang, Wenming & Li, Shaobo & E, Jiaqiang & Li, Zhenwei & Tao, Meng & Zhang, Ansi, 2022. "Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic," Energy, Elsevier, vol. 239(PD).
    5. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    6. Zuo, Wei & Zhang, Yuntian & Li, Qingqing & Li, Jing & He, Zhu, 2021. "Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications," Energy, Elsevier, vol. 223(C).
    7. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    8. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    9. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    11. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    12. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    13. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    14. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    15. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    16. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    17. Yang, Xiao & Yang, Wenming & Dong, Shikui & Tan, Heping, 2020. "Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor," Energy, Elsevier, vol. 209(C).
    18. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    19. Zuo, Wei & Li, Qingqing & He, Zhu & Li, Yawei, 2020. "Numerical investigations on thermal performance enhancement of hydrogen-fueled micro planar combustors with injectors for micro-thermophotovoltaic applications," Energy, Elsevier, vol. 194(C).
    20. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Xu, Hongpeng & Li, Zhenwei & Tay, Kunlin & Zeng, Guang & Yu, Wenbin, 2020. "Investigation on premixed H2/C3H8/air combustion in porous medium combustor for the micro thermophotovoltaic application," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3201-:d:1114015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.