IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v84y2015icp600-611.html
   My bibliography  Save this article

Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor

Author

Listed:
  • Nemitallah, Medhat A.
  • Habib, Mohamed A.
  • Mezghani, K.

Abstract

A combined experimental and numerical study is performed on a button-cell LNO-ITM reactor. A semi-empirical model for oxygen permeation is considered, ABn model, and the values of the empirical constants are calculated based on the fitting of the available experimental data in the literature. A validation study for the present model is performed using the present experimental data. A detailed numerical study is presented on an LNO-ITM button-cell reactor under oxy-fuel combustion conditions. CH4 is used as the working fuel forming a mixture with CO2 at the permeate side inlet. The model results showed reasonable agreements under different operating conditions. The effect of reactivity in the permeate side of the membrane on oxygen permeation flux is considered. It is found that the oxygen permeation flux is increased by about 50% for the case of reacting flow as compared to the case of non-reacting flow. Distinct behavior of oxygen permeation flux values through the present button-cell ITM reactor is encountered while varying the operating conditions as compared to other reactors in the literature. This may be attributed to the complicated design of the flow path close to the membrane surface which maximizes the effects of flow momentum on the oxygen flux.

Suggested Citation

  • Nemitallah, Medhat A. & Habib, Mohamed A. & Mezghani, K., 2015. "Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor," Energy, Elsevier, vol. 84(C), pages 600-611.
  • Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:600-611
    DOI: 10.1016/j.energy.2015.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215003163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kotowicz, Janusz & Michalski, Sebastian, 2014. "Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation," Energy, Elsevier, vol. 64(C), pages 109-119.
    2. Mancini, N.D. & Mitsos, A., 2011. "Ion transport membrane reactors for oxy-combustion–Part II: Analysis and comparison of alternatives," Energy, Elsevier, vol. 36(8), pages 4721-4739.
    3. Mancini, N.D. & Mitsos, A., 2011. "Ion transport membrane reactors for oxy-combustion – Part I: intermediate-fidelity modeling," Energy, Elsevier, vol. 36(8), pages 4701-4720.
    4. Ahmed, Pervez & Habib, Mohamed A. & Ben-Mansour, Rached & Kirchen, Patrick & Ghoniem, Ahmed F., 2014. "CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion," Energy, Elsevier, vol. 77(C), pages 932-944.
    5. Ben Mansour, R. & Nemitallah, M.A. & Habib, M.A., 2013. "Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor," Energy, Elsevier, vol. 54(C), pages 322-332.
    6. Habib, Mohamed A. & Nemitallah, Medhat A., 2015. "Design of an ion transport membrane reactor for application in fire tube boilers," Energy, Elsevier, vol. 81(C), pages 787-801.
    7. Gunasekaran, S. & Mancini, N.D. & Mitsos, A., 2014. "Optimal design and operation of membrane-based oxy-combustion power plants," Energy, Elsevier, vol. 70(C), pages 338-354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib, Mohamed A. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Abdelhafez, Ahmed, 2017. "Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor," Applied Energy, Elsevier, vol. 189(C), pages 177-186.
    2. Turi, Davide Maria & Chiesa, Paolo & Macchi, Ennio & Ghoniem, Ahmed F., 2016. "High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data," Energy, Elsevier, vol. 96(C), pages 127-141.
    3. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2020. "Thermodynamic analysis and optimization of an oxy-combustion combined cycle power plant based on a membrane reactor equipped with a high-temperature ion transport membrane ITM," Energy, Elsevier, vol. 205(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Nemitallah, Medhat A. & Ben-Mansour, R. & Mokheimer, Esmail M.A., 2016. "Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor," Energy, Elsevier, vol. 96(C), pages 654-665.
    2. Habib, Mohamed A. & Nemitallah, Medhat A., 2015. "Design of an ion transport membrane reactor for application in fire tube boilers," Energy, Elsevier, vol. 81(C), pages 787-801.
    3. Habib, Mohamed A. & Nemitallah, Medhat A. & Ahmed, Pervez & Sharqawy, Mostafa H. & Badr, Hassan M. & Muhammad, Inam & Yaqub, Mohamed, 2015. "Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions," Energy, Elsevier, vol. 86(C), pages 105-114.
    4. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2020. "Thermodynamic analysis and optimization of an oxy-combustion combined cycle power plant based on a membrane reactor equipped with a high-temperature ion transport membrane ITM," Energy, Elsevier, vol. 205(C).
    5. Shin, Donghwan & Kang, Sanggyu, 2018. "Numerical analysis of an ion transport membrane system for oxy–fuel combustion," Applied Energy, Elsevier, vol. 230(C), pages 875-888.
    6. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    7. Turi, Davide Maria & Chiesa, Paolo & Macchi, Ennio & Ghoniem, Ahmed F., 2016. "High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data," Energy, Elsevier, vol. 96(C), pages 127-141.
    8. Gunasekaran, S. & Mancini, N.D. & El-Khaja, R. & Sheu, E.J. & Mitsos, A., 2014. "Solar–thermal hybridization of advanced zero emissions power cycle," Energy, Elsevier, vol. 65(C), pages 152-165.
    9. Habib, Mohamed A. & Imteyaz, Binash & Nemitallah, Medhat A., 2020. "Second law analysis of premixed and non-premixed oxy-fuel combustion cycles utilizing oxygen separation membranes," Applied Energy, Elsevier, vol. 259(C).
    10. Ahmed, Pervez & Habib, Mohamed A. & Ben-Mansour, Rached & Kirchen, Patrick & Ghoniem, Ahmed F., 2014. "CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion," Energy, Elsevier, vol. 77(C), pages 932-944.
    11. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    12. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    13. Ben Mansour, R. & Nemitallah, M.A. & Habib, M.A., 2013. "Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor," Energy, Elsevier, vol. 54(C), pages 322-332.
    14. Fu, Chao & Gundersen, Truls, 2012. "Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes," Energy, Elsevier, vol. 44(1), pages 60-68.
    15. Gunasekaran, S. & Mancini, N.D. & Mitsos, A., 2014. "Optimal design and operation of membrane-based oxy-combustion power plants," Energy, Elsevier, vol. 70(C), pages 338-354.
    16. Kotowicz, Janusz & Michalski, Sebastian, 2016. "Thermodynamic and economic analysis of a supercritical and an ultracritical oxy-type power plant without and with waste heat recovery," Applied Energy, Elsevier, vol. 179(C), pages 806-820.
    17. Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
    18. Zima, Wiesław & Nowak-Ocłoń, Marzena & Ocłoń, Paweł, 2015. "Simulation of fluid heating in combustion chamber waterwalls of boilers for supercritical steam parameters," Energy, Elsevier, vol. 92(P1), pages 117-127.
    19. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    20. Te Zhao & Chusheng Chen & Hong Ye, 2021. "CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor," Energies, MDPI, vol. 14(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:84:y:2015:i:c:p:600-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.