IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v60y2013icp44-52.html
   My bibliography  Save this article

Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: Characteristics of product yields and biocrude oil quality

Author

Listed:
  • Bok, Jin Pil
  • Choi, Hang Seok
  • Choi, Joon Weon
  • Choi, Yeon Seok

Abstract

In the present work, fast pyrolysis of Miscanthus sinensis was performed and the product yields and properties of the resulting biocrude oil were determined for varying reactor configurations and pyrolysis temperatures. Two types of reactors (rectangular and cylindrical fluidized beds) were adopted, and pyrolysis temperature was increased from 400 °C to 550 °C. Based on the results, it was found that the reaction temperature greatly influenced the product yield and the characteristics of biocrude oil. The highest yield of biocrude oil for the rectangular reactor was 48.9 wt.%, produced at 500 °C, and the highest yield for the cylindrical reactor was 50.01 wt.%, produced at 450 °C. Additionally, the biocrude oil yield in the rectangular reactor sharply decreased when reaction temperature was increased to 550 °C, while only a slight decrease was observed in the cylindrical reactor. From GC/MS analysis, biocrude oil was found to contain various chemical components, such as nonaromatic ketones, furans, sugars, lignin-derived phenols, guaiacols and syringols. In particular, the sugar content of the biocrude oil produced in rectangular reactor (2.11–9.35 wt.%) was generally lower than that produced in the cylindrical reactor (7.93–10.79 wt.%).

Suggested Citation

  • Bok, Jin Pil & Choi, Hang Seok & Choi, Joon Weon & Choi, Yeon Seok, 2013. "Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 60(C), pages 44-52.
  • Handle: RePEc:eee:energy:v:60:y:2013:i:c:p:44-52
    DOI: 10.1016/j.energy.2013.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213006993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emily Heaton & Stephen Long & Thomas Voigt & Michael Jones & John Clifton-Brown, 2004. "Miscanthus for Renewable Energy Generation: European Union Experience and Projections for Illinois," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 433-451, October.
    2. Pütün, Ayşe E. & Apaydın, Esin & Pütün, Ersan, 2004. "Rice straw as a bio-oil source via pyrolysis and steam pyrolysis," Energy, Elsevier, vol. 29(12), pages 2171-2180.
    3. Bok, Jin Pil & Choi, Hang Seok & Choi, Yeon Seok & Park, Hoon Chae & Kim, Seock Joon, 2012. "Fast pyrolysis of coffee grounds: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 47(1), pages 17-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vilaysit Thithai & Xuanjun Jin & Muhammed Ajaz Ahmed & Joon-Weon Choi, 2021. "Physicochemical Properties of Activated Carbons Produced from Coffee Waste and Empty Fruit Bunch by Chemical Activation Method," Energies, MDPI, vol. 14(11), pages 1-16, May.
    2. Oh, Shinyoung & Kim, Ung-Jin & Choi, In-Gyu & Choi, Joon Weon, 2016. "Solvent effects on improvement of fuel properties during hydrodeoxygenation process of bio-oil in the presence of Pt/C," Energy, Elsevier, vol. 113(C), pages 116-123.
    3. Leng, Erwei & He, Ben & Chen, Jingwei & Liao, Gaoliang & Ma, Yinjie & Zhang, Feng & Liu, Shuai & E, Jiaqiang, 2021. "Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning," Energy, Elsevier, vol. 236(C).
    4. Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
    5. Sang Kyu Choi & Yeon Seok Choi & Yeon Woo Jeong & So Young Han & Quynh Van Nguyen, 2020. "Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor," Energies, MDPI, vol. 13(24), pages 1-19, December.
    6. Kim, Jae-Young & Oh, Shinyoung & Hwang, Hyewon & Moon, Youn-Ho & Choi, Joon Weon, 2014. "Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis," Energy, Elsevier, vol. 76(C), pages 284-291.
    7. Wang, Wei-Cheng & Jan, Jyun-Jhih, 2018. "From laboratory to pilot: Design concept and techno-economic analyses of the fluidized bed fast pyrolysis of biomass," Energy, Elsevier, vol. 155(C), pages 139-151.
    8. Jin, Sung Ho & Lee, Hyung Won & Ryu, Changkook & Jeon, Jong-Ki & Park, Young-Kwon, 2015. "Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites," Energy, Elsevier, vol. 81(C), pages 41-46.
    9. Zheng, Ji-Lu & Zhu, Ya-Hong & Zhu, Ming-Qiang & Wu, Hai-Tang & Sun, Run-Cang, 2018. "Bio-oil gasification using air - Steam as gasifying agents in an entrained flow gasifier," Energy, Elsevier, vol. 142(C), pages 426-435.
    10. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    11. Lee, Hyung Won & Jun, Bo Ram & Kim, Hannah & Kim, Do Heui & Jeon, Jong-Ki & Park, Sung Hoon & Ko, Chang Hyun & Kim, Tae-Wan & Park, Young-Kwon, 2015. "Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites," Energy, Elsevier, vol. 81(C), pages 33-40.
    12. Hwang, Jae Gyu & Park, Hoon Chae & Choi, Joon Weon & Oh, Shin Young & Moon, Youn Ho & Choi, Hang Seok, 2016. "Fast pyrolysis of the energy crop “Geodae-Uksae 1” in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 95(C), pages 1-11.
    13. Choi, Sang Kyu & Choi, Yeon Seok & Han, So Young & Kim, Seock Joon & Rahman, Tawsif & Jeong, Yeon Woo & Van Nguyen, Quynh & Cha, Young Rok, 2019. "Bio-crude oil production from a new genotype of Miscanthus sacchariflorus Geodae-Uksae 1," Renewable Energy, Elsevier, vol. 144(C), pages 153-158.
    14. Alina Kowalczyk-Juśko & Andrzej Mazur & Patrycja Pochwatka & Damian Janczak & Jacek Dach, 2022. "Evaluation of the Effects of Using the Giant Miscanthus ( Miscanthus × Giganteus ) Biomass in Various Energy Conversion Processes," Energies, MDPI, vol. 15(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Sang Kyu & Choi, Yeon Seok & Han, So Young & Kim, Seock Joon & Rahman, Tawsif & Jeong, Yeon Woo & Van Nguyen, Quynh & Cha, Young Rok, 2019. "Bio-crude oil production from a new genotype of Miscanthus sacchariflorus Geodae-Uksae 1," Renewable Energy, Elsevier, vol. 144(C), pages 153-158.
    2. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    3. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    4. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    5. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    6. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    7. Stefan Gold, 2011. "Bio-energy supply chains and stakeholders," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(4), pages 439-462, April.
    8. A. E. Atabani & Eyas Mahmoud & Muhammed Aslam & Salman Raza Naqvi & Dagmar Juchelková & Shashi Kant Bhatia & Irfan Anjum Badruddin & T. M. Yunus Khan & Anh Tuan Hoang & Petr Palacky, 2023. "Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7585-7623, August.
    9. Ge, Xumeng & Xu, Fuqing & Vasco-Correa, Juliana & Li, Yebo, 2016. "Giant reed: A competitive energy crop in comparison with miscanthus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 350-362.
    10. Xue, Shuai & Kalinina, Olena & Lewandowski, Iris, 2015. "Present and future options for Miscanthus propagation and establishment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1233-1246.
    11. Anand, Mohit & Duffy, Patricia & Bransby, David, 2017. "Will switchgrass as a bio-crop be adopted by the farmers?," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252724, Southern Agricultural Economics Association.
    12. Rijo, Bruna & Soares Dias, Ana Paula & Ramos, Marta & de Jesus, Nicole & Puna, Jaime, 2021. "Catalyzed pyrolysis of coffee and tea wastes," Energy, Elsevier, vol. 235(C).
    13. Gedikoglu, Haluk, 2012. "Impact of Off-Farm Employment on Farmers’ Willingness to Grow Switchgrass and Miscanthus," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119663, Southern Agricultural Economics Association.
    14. Kheshgi, Haroon S. & Prince, Roger C., 2005. "Sequestration of fermentation CO2 from ethanol production," Energy, Elsevier, vol. 30(10), pages 1865-1871.
    15. Sang Kyu Choi & Yeon Seok Choi & Yeon Woo Jeong & So Young Han & Quynh Van Nguyen, 2020. "Characteristics of Flame Stability and Gaseous Emission of Bio-Crude Oil from Coffee Ground in a Pilot-Scale Spray Burner," Energies, MDPI, vol. 13(11), pages 1-12, June.
    16. Tomasz Matula & Jerzy Labaj & Krzysztof Nowacki & Leszek Blacha & Lukasz Kortyka & Lukasz Mycka & Piotr Madej & Lukasz Jaworek & Tomasz Wojtal, 2023. "Application of Spent Coffee Grounds (SCGs) as a Fuel and Alternative Reducer of Slags from the Copper Industry," Energies, MDPI, vol. 16(5), pages 1-17, March.
    17. Biswas, Bijoy & Singh, Rawel & Kumar, Jitendra & Singh, Raghuvir & Gupta, Piyush & Krishna, Bhavya B. & Bhaskar, Thallada, 2018. "Pyrolysis behavior of rice straw under carbon dioxide for production of bio-oil," Renewable Energy, Elsevier, vol. 129(PB), pages 686-694.
    18. Yuan, X.Z. & Li, H. & Zeng, G.M. & Tong, J.Y. & Xie, W., 2007. "Sub- and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture," Energy, Elsevier, vol. 32(11), pages 2081-2088.
    19. Merckel, Ryan D. & Labuschagne, Frederick J.W.J. & Heydenrych, Michael D., 2020. "Energy metrics of fuel juxtaposed with mass yield metrics," Renewable Energy, Elsevier, vol. 159(C), pages 371-379.
    20. Gedikoglu, Haluk, 2015. "Socio-Economic Factors And Adoption O Fenergy Crops," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 3(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:60:y:2013:i:c:p:44-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.