IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6605-d462033.html
   My bibliography  Save this article

Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor

Author

Listed:
  • Sang Kyu Choi

    (Department of Clean Fuel & Power Generation, Korea Institute of Machinery & Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea
    Environment & Energy Mechanical Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea)

  • Yeon Seok Choi

    (Department of Clean Fuel & Power Generation, Korea Institute of Machinery & Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea
    Environment & Energy Mechanical Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea)

  • Yeon Woo Jeong

    (Department of Clean Fuel & Power Generation, Korea Institute of Machinery & Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea)

  • So Young Han

    (Department of Clean Fuel & Power Generation, Korea Institute of Machinery & Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea)

  • Quynh Van Nguyen

    (Environment & Energy Mechanical Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea)

Abstract

The fast pyrolysis of coffee ground for bio-crude oil production was simulated in a tilted-slide reactor. The biochemical composition was derived by an extended biomass characterization method based on the elemental analysis. The simulation was performed in a steady-state and a Lagrangian multiphase model was adopted to describe the transport of sand and biomass particles together with a multistep kinetic mechanism for fast pyrolysis. When the secondary tar cracking reactions were not considered the volatile yield increased monotonically with temperature. The inclusion of secondary reactions could improve the prediction of volatile yield which turn to decrease at higher temperature. It was found that not only the maximum volatile yield but also the corresponding reactor temperature agreed well with the experimental results. At the temperature higher than 550 °C the trend of volatile yield is similar to that of experiment while it is larger at lower reactor temperature. The individual species yields were compared at various reactor temperatures and the pyrolysis processes were analyzed by tracking the reference components when they were decomposed along the distance. It was found that the reactor temperature should be above 500 °C for effective pyrolysis of all reference components of coffee ground.

Suggested Citation

  • Sang Kyu Choi & Yeon Seok Choi & Yeon Woo Jeong & So Young Han & Quynh Van Nguyen, 2020. "Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor," Energies, MDPI, vol. 13(24), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6605-:d:462033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bok, Jin Pil & Choi, Hang Seok & Choi, Joon Weon & Choi, Yeon Seok, 2013. "Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 60(C), pages 44-52.
    2. Bok, Jin Pil & Choi, Yeon Seok & Choi, Sang Kyu & Jeong, Yeon Woo, 2014. "Fast pyrolysis of Douglas fir by using tilted-slide reactor and characteristics of biocrude-oil fractions," Renewable Energy, Elsevier, vol. 65(C), pages 7-13.
    3. Sia, Sheng Qiang & Wang, Wei-Cheng, 2020. "Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics," Renewable Energy, Elsevier, vol. 155(C), pages 248-256.
    4. Park, Hoon Chae & Choi, Hang Seok, 2019. "Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction," Renewable Energy, Elsevier, vol. 143(C), pages 1268-1284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    2. Tomasz P. Olejnik & Tymoteusz Mysakowski & Paweł Tomtas & Radosław Mostowski, 2021. "Optimization of the Beef Drying Process in a Heat Pump Chamber Dryer," Energies, MDPI, vol. 14(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    2. Choi, Sang Kyu & Choi, Yeon Seok & Han, So Young & Kim, Seock Joon & Rahman, Tawsif & Jeong, Yeon Woo & Van Nguyen, Quynh & Cha, Young Rok, 2019. "Bio-crude oil production from a new genotype of Miscanthus sacchariflorus Geodae-Uksae 1," Renewable Energy, Elsevier, vol. 144(C), pages 153-158.
    3. Oh, Shinyoung & Kim, Ung-Jin & Choi, In-Gyu & Choi, Joon Weon, 2016. "Solvent effects on improvement of fuel properties during hydrodeoxygenation process of bio-oil in the presence of Pt/C," Energy, Elsevier, vol. 113(C), pages 116-123.
    4. Yang, Shiliang & Dong, Ruihan & Du, Yanxiang & Wang, Shuai & Wang, Hua, 2021. "Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics," Energy, Elsevier, vol. 214(C).
    5. Lee, Hyung Won & Jun, Bo Ram & Kim, Hannah & Kim, Do Heui & Jeon, Jong-Ki & Park, Sung Hoon & Ko, Chang Hyun & Kim, Tae-Wan & Park, Young-Kwon, 2015. "Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites," Energy, Elsevier, vol. 81(C), pages 33-40.
    6. Sellin, Noeli & Krohl, Diego Ricardo & Marangoni, Cintia & Souza, Ozair, 2016. "Oxidative fast pyrolysis of banana leaves in fluidized bed reactor," Renewable Energy, Elsevier, vol. 96(PA), pages 56-64.
    7. Alina Kowalczyk-Juśko & Andrzej Mazur & Patrycja Pochwatka & Damian Janczak & Jacek Dach, 2022. "Evaluation of the Effects of Using the Giant Miscanthus ( Miscanthus × Giganteus ) Biomass in Various Energy Conversion Processes," Energies, MDPI, vol. 15(10), pages 1-16, May.
    8. Jin, Sung Ho & Lee, Hyung Won & Ryu, Changkook & Jeon, Jong-Ki & Park, Young-Kwon, 2015. "Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites," Energy, Elsevier, vol. 81(C), pages 41-46.
    9. Zheng, Ji-Lu & Zhu, Ya-Hong & Zhu, Ming-Qiang & Wu, Hai-Tang & Sun, Run-Cang, 2018. "Bio-oil gasification using air - Steam as gasifying agents in an entrained flow gasifier," Energy, Elsevier, vol. 142(C), pages 426-435.
    10. Anirudh Kulkarni & Garima Mishra & Sridhar Palla & Potnuri Ramesh & Dadi Venkata Surya & Tanmay Basak, 2023. "Advances in Computational Fluid Dynamics Modeling for Biomass Pyrolysis: A Review," Energies, MDPI, vol. 16(23), pages 1-32, November.
    11. Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
    12. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    13. Leng, Erwei & He, Ben & Chen, Jingwei & Liao, Gaoliang & Ma, Yinjie & Zhang, Feng & Liu, Shuai & E, Jiaqiang, 2021. "Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning," Energy, Elsevier, vol. 236(C).
    14. Wang, Wei-Cheng & Jan, Jyun-Jhih, 2018. "From laboratory to pilot: Design concept and techno-economic analyses of the fluidized bed fast pyrolysis of biomass," Energy, Elsevier, vol. 155(C), pages 139-151.
    15. Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2022. "Numerical modeling of biomass fast pyrolysis by using an improved comprehensive reaction scheme for energy analysis," Renewable Energy, Elsevier, vol. 181(C), pages 355-364.
    16. Vilaysit Thithai & Xuanjun Jin & Muhammed Ajaz Ahmed & Joon-Weon Choi, 2021. "Physicochemical Properties of Activated Carbons Produced from Coffee Waste and Empty Fruit Bunch by Chemical Activation Method," Energies, MDPI, vol. 14(11), pages 1-16, May.
    17. Kim, Jae-Young & Oh, Shinyoung & Hwang, Hyewon & Moon, Youn-Ho & Choi, Joon Weon, 2014. "Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis," Energy, Elsevier, vol. 76(C), pages 284-291.
    18. Yang, Shiliang & Fan, Feihu & Hu, Jianhang & Wang, Hua, 2020. "Particle-scale evaluation of the biomass steam-gasification process in a conical spouted bed gasifier," Renewable Energy, Elsevier, vol. 162(C), pages 844-860.
    19. Hwang, Jae Gyu & Park, Hoon Chae & Choi, Joon Weon & Oh, Shin Young & Moon, Youn Ho & Choi, Hang Seok, 2016. "Fast pyrolysis of the energy crop “Geodae-Uksae 1” in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 95(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6605-:d:462033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.