IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp1268-1284.html
   My bibliography  Save this article

Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction

Author

Listed:
  • Park, Hoon Chae
  • Choi, Hang Seok

Abstract

The present study focused on modeling the gas-solid multi-phase flow and pyrolysis reaction of biomass in a spouted bed reactor. For the first time, the kinetics of biomass pyrolysis in a spouted bed were measured by the micro-spouted bed thermogravimetric analyzer (MSB-TGA) and applied to the fast pyrolysis reaction during computational particle fluid dynamics (CPFD) analysis. The CPFD results of biomass pyrolysis show that, compared to conventional TGA, the kinetic data obtained by MSB-TGA provide reliable results for the pyrolysis reaction of biomass. The effects of reaction temperature and gas velocity on hydrodynamics, heat transfer, and the consequent pyrolysis reaction were also investigated. A significant change in pyrolysis product yield was observed as a result of enhanced mixing and heat transfer between bed materials and biomass particles by increasing the gas velocity. The tar yield increased to 64.8 wt% when the gas velocity was increased to 6 m/s, and then it decreased as the gas velocity exceeded 6 m/s. With increasing reaction temperature, the tar yield first increased and then decreased, with a maximum value of approximately 58.7 wt% at 450 °C. From 450 to 550 °C, the tar yield decreased from 58.7 wt% to 50.9 wt%, respectively.

Suggested Citation

  • Park, Hoon Chae & Choi, Hang Seok, 2019. "Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction," Renewable Energy, Elsevier, vol. 143(C), pages 1268-1284.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1268-1284
    DOI: 10.1016/j.renene.2019.05.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Butler, Eoin & Devlin, Ger & Meier, Dietrich & McDonnell, Kevin, 2011. "A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4171-4186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sang Kyu Choi & Yeon Seok Choi & Yeon Woo Jeong & So Young Han & Quynh Van Nguyen, 2020. "Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor," Energies, MDPI, vol. 13(24), pages 1-19, December.
    2. Yang, Shiliang & Dong, Ruihan & Du, Yanxiang & Wang, Shuai & Wang, Hua, 2021. "Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics," Energy, Elsevier, vol. 214(C).
    3. Yang, Shiliang & Fan, Feihu & Hu, Jianhang & Wang, Hua, 2020. "Particle-scale evaluation of the biomass steam-gasification process in a conical spouted bed gasifier," Renewable Energy, Elsevier, vol. 162(C), pages 844-860.
    4. Anirudh Kulkarni & Garima Mishra & Sridhar Palla & Potnuri Ramesh & Dadi Venkata Surya & Tanmay Basak, 2023. "Advances in Computational Fluid Dynamics Modeling for Biomass Pyrolysis: A Review," Energies, MDPI, vol. 16(23), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    2. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    3. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    4. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    5. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    6. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    7. Cui, Yunlei & Zhang, Yaning & Cui, Longfei & Xiong, Qingang & Mostafa, Ehab, 2023. "Microwave-assisted fluidized bed reactor pyrolysis of polypropylene plastic for pyrolysis gas production towards a sustainable development," Applied Energy, Elsevier, vol. 342(C).
    8. Pardey, Philip G. & Beddow, Jason M. & Hurley, Terrance M. & Beatty, Timothy K.M. & Eidman, Vernon R., 2014. "The International Agricultural Prospects Model: Assessing Consumption and Production Futures Through 2050 (version 2.1)," Staff Papers 182192, University of Minnesota, Department of Applied Economics.
    9. Fang, Shuqi & Jiang, Luyao & Li, Pan & Bai, Jing & Chang, Chun, 2020. "Study on pyrolysis products characteristics of medical waste and fractional condensation of the pyrolysis oil," Energy, Elsevier, vol. 195(C).
    10. Shaik Anwar Ahamed Nabeela Nasreen & Subramanian Sundarrajan & Syed Abdulrahim Syed Nizar & He Wei & Dong Xuecheng & Seeram Ramakrishna, 2022. "Pyrolysis, Microwave, Chemical and Biodegradation Methodology in Recycling of Plastic Waste: a Circular Economy Concept," Circular Economy and Sustainability,, Springer.
    11. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    12. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Wei, Xiaocui & Xue, Xiangfei & Wu, Liu & Yu, Haozhe & Liang, Jie & Sun, Yifei, 2020. "High-grade bio-oil produced from coconut shell: A comparative study of microwave reactor and core-shell catalyst," Energy, Elsevier, vol. 212(C).
    15. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    16. Mendoza-Martinez, Clara & Sermyagina, Ekaterina & Saari, Jussi & Ramos, Vinicius Faria & Vakkilainen, Esa & Cardoso, Marcelo & Alves Rocha, Elém Patrícia, 2023. "Fast oxidative pyrolysis of eucalyptus wood residues to replace fossil oil in pulp industry," Energy, Elsevier, vol. 263(PE).
    17. No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
    18. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    19. Gorugantu SriBala & Hans‐Heinrich Carstensen & Kevin M. Van Geem & Guy B. Marin, 2019. "Measuring biomass fast pyrolysis kinetics: State of the art," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(2), March.
    20. Chen, Guanyi & Yao, Jingang & Liu, Jing & Yan, Beibei & Shan, Rui, 2016. "Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil," Renewable Energy, Elsevier, vol. 91(C), pages 315-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1268-1284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.