IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v190y2020ics0360544219319310.html
   My bibliography  Save this article

Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis

Author

Listed:
  • Kandasamy, Sabariswaran
  • Zhang, Bo
  • He, Zhixia
  • Chen, Haitao
  • Feng, Huan
  • Wang, Qian
  • Wang, Bin
  • Ashokkumar, Veeramuthu
  • Siva, Subramanian
  • Bhuvanendran, Narayanamoorthy
  • Krishnamoorthi, M.

Abstract

In this work, the cerium oxide (CeO2) nanocatalyst was employed as a catalyst to enhance the hydrothermal liquefaction (HTL) of microalgae to bio-oil conversion. The HTL optimized parameters were obtained from response surface methodology (RSM). The Spirulina Platensis is blue-green algae were used to convert into bio-oil. The major processing method for bio-oil conversion was designed based on three key parameters, such as temperature, residence time and catalyst concentration. A remarkable enhancement of bio-oil production was observed for 0.20 g of CeO2 catalyzed HTL at 250 °C for 30 min, and around 26% of conversion was achieved which is higher than catalyst-free HTL reaction (16%). The synthetic CeO2 nanostructure was characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), brunauer-emmett-teller surface area (BET), X-ray powder diffraction (XRD) and thermal gravimetric analysis (TGA). The chemical composition of bio-oil was analyzed by gas chromatography-mass spectrometry (GC-MS) and the functional group analysis was done using fourier transform-infra red spectroscopy (FT-IR). The obtained results clearly reveal that the major chemical constituents such as hydrocarbons (7.55%), amino acids (36.69%) and nitrogen compounds (21.58%) for the bio-oil increased during CeO2 catalyzed HTL reaction. This investigation depicts that, the CeO2 nanoparticle could be employed as a potential candidate to accelerate the bio-oil conversion through HTL at low temperature from Spirulina platensis.

Suggested Citation

  • Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219319310
    DOI: 10.1016/j.energy.2019.116236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219319310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    2. Zhu, Zhe & Toor, Saqib Sohail & Rosendahl, Lasse & Yu, Donghong & Chen, Guanyi, 2015. "Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw," Energy, Elsevier, vol. 80(C), pages 284-292.
    3. Jena, Umakanta & Das, K.C. & Kastner, J.R., 2012. "Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis," Applied Energy, Elsevier, vol. 98(C), pages 368-375.
    4. Bok, Jin Pil & Choi, Hang Seok & Choi, Joon Weon & Choi, Yeon Seok, 2013. "Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 60(C), pages 44-52.
    5. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    6. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    7. Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
    8. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    9. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    10. Zhang, Bo & Chen, Jixiang & He, Zhixia & Chen, Haitao & Kandasamy, Sabariswaran, 2019. "Hydrothermal liquefaction of fresh lemon-peel: Parameter optimisation and product chemistry," Renewable Energy, Elsevier, vol. 143(C), pages 512-519.
    11. Saber, Mohammad & Golzary, Abooali & Hosseinpour, Morteza & Takahashi, Fumitake & Yoshikawa, Kunio, 2016. "Catalytic hydrothermal liquefaction of microalgae using nanocatalyst," Applied Energy, Elsevier, vol. 183(C), pages 566-576.
    12. Watson, Jamison & Lu, Jianwen & de Souza, Raquel & Si, Buchun & Zhang, Yuanhui & Liu, Zhidan, 2019. "Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency," Energy, Elsevier, vol. 167(C), pages 189-197.
    13. Volpe, Roberto & Messineo, Antonio & Millan, Marcos & Volpe, Maurizio & Kandiyoti, Rafael, 2015. "Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown," Energy, Elsevier, vol. 82(C), pages 119-127.
    14. Feng, Huan & He, Zhixia & Zhang, Bo & Chen, Haitao & Wang, Qian & Kandasamy, Sabariswaran, 2019. "Synergistic bio-oil production from hydrothermal co-liquefaction of Spirulina platensis and α-Cellulose," Energy, Elsevier, vol. 174(C), pages 1283-1291.
    15. Yang, Jie & He, Quan (Sophia) & Corscadden, Kenneth & Niu, Haibo & Lin, Jianan & Astatkie, Tess, 2019. "Advanced models for the prediction of product yield in hydrothermal liquefaction via a mixture design of biomass model components coupled with process variables," Applied Energy, Elsevier, vol. 233, pages 906-915.
    16. Shuping, Zou & Yulong, Wu & Mingde, Yang & Kaleem, Imdad & Chun, Li & Tong, Junmao, 2010. "Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake," Energy, Elsevier, vol. 35(12), pages 5406-5411.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    2. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    3. Hosseini, Mohammad & Hatefirad, Parvaneh & Salimi, Saeideh & Tavasoli, Ahmad, 2022. "Hydrothermal liquefaction of granular bacteria to high-quality bio-oil using Ni–Ce catalysts supported on functionalized activated carbon," Energy, Elsevier, vol. 241(C).
    4. Manimaran, Rajayokkiam & Mohanraj, Thangavelu & Venkatesan, Moorthy & Ganesan, Rajamohan & Balasubramanian, Dhinesh, 2022. "A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approac," Energy, Elsevier, vol. 254(PB).
    5. Wang, Bin & He, Zhixia & Zhang, Bo & Duan, Yibing, 2021. "Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil," Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Wang, Bin & He, Zhixia & Zhang, Bo & Duan, Yibing, 2021. "Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil," Energy, Elsevier, vol. 230(C).
    3. Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.
    4. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Chen, Congjin & Zhu, Jingxian & Jia, Shuang & Mi, Shuai & Tong, Zhangfa & Li, Zhixia & Li, Mingfei & Zhang, Yanjuan & Hu, Yuhua & Huang, Zuqiang, 2018. "Effect of ethanol on Mulberry bark hydrothermal liquefaction and bio-oil chemical compositions," Energy, Elsevier, vol. 162(C), pages 460-475.
    6. Duan, Yibing & He, Zhixia & Zhang, Bo & Wang, Bin & Zhang, Feiyang, 2022. "Synergistic effect of hydrothermal co-liquefaction of Camellia oleifera Abel and Spirulina platensis: Parameters optimization and product characteristics," Renewable Energy, Elsevier, vol. 186(C), pages 26-34.
    7. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    8. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    9. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    10. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    11. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    12. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    13. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    14. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Chen, Xinfei & Ma, Xiaoqian & Zeng, Xianghao & Zheng, Chupeng & Lu, Xiaoluan, 2020. "Ethanol addition during aqueous phase recirculation for further improving bio-oil yield and quality," Applied Energy, Elsevier, vol. 262(C).
    16. Alex R. Maag & Alex D. Paulsen & Ted J. Amundsen & Paul E. Yelvington & Geoffrey A. Tompsett & Michael T. Timko, 2018. "Catalytic Hydrothermal Liquefaction of Food Waste Using CeZrO x," Energies, MDPI, vol. 11(3), pages 1-14, March.
    17. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    18. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    20. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219319310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.