IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp248-256.html

Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics

Author

Listed:
  • Sia, Sheng Qiang
  • Wang, Wei-Cheng

Abstract

In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast pyrolysis. Based on the Euler-Euler multiphase framework, standard K-ε model and Finite-Rate/Eddy-Dissipation model were selected for the viscous and the species transport model, respectively. Syamlal O’brien model and Arrhenius kinetic model were chosen as the drag and reaction kinetics model, respectively. The volume fractions as well as the temperature distributions of the fluidizing gas, biomass and fluidizing sand at the fluidization velocity of 0.6 m/s were numerically observed. The simulation of the reaction temperature influence on product yield agreed well with the lab-scale experimental results. The distributions of the gas products show that CO and H2 are mostly at the lower part of the reactor, CH4 is in the freeboard region and CO2 is at both the reaction and freeboard zone. The proposed CFD model was expected to make contributions for improving the internal process and reactor optimization for biomass fluidized bed fast pyrolysis.

Suggested Citation

  • Sia, Sheng Qiang & Wang, Wei-Cheng, 2020. "Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics," Renewable Energy, Elsevier, vol. 155(C), pages 248-256.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:248-256
    DOI: 10.1016/j.renene.2020.03.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Papari, Sadegh & Hawboldt, Kelly, 2015. "A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1580-1595.
    2. Xiu, Shuangning & Shahbazi, Abolghasem, 2012. "Bio-oil production and upgrading research: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4406-4414.
    3. Kim, Jae-Young & Oh, Shinyoung & Hwang, Hyewon & Moon, Youn-Ho & Choi, Joon Weon, 2014. "Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis," Energy, Elsevier, vol. 76(C), pages 284-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sang Kyu Choi & Yeon Seok Choi & Yeon Woo Jeong & So Young Han & Quynh Van Nguyen, 2020. "Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor," Energies, MDPI, vol. 13(24), pages 1-19, December.
    2. Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2022. "Numerical modeling of biomass fast pyrolysis by using an improved comprehensive reaction scheme for energy analysis," Renewable Energy, Elsevier, vol. 181(C), pages 355-364.
    3. Mayu Hamazaki & Shan Miao & Mitsuo Kameyama & Hisashi Kamiuchi & Kiyoshi Dowaki, 2024. "CFD Simulation of Moving-Bed Pyrolizer for Sewage Sludge Considering Gas and Tar Behavior," Sustainability, MDPI, vol. 16(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leng, Erwei & He, Ben & Chen, Jingwei & Liao, Gaoliang & Ma, Yinjie & Zhang, Feng & Liu, Shuai & E, Jiaqiang, 2021. "Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning," Energy, Elsevier, vol. 236(C).
    2. Toscano Miranda, Nahieh & Lopes Motta, Ingrid & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2021. "Sugarcane bagasse pyrolysis: A review of operating conditions and products properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Douglas Alberto Rocha de Castro & Haroldo Jorge da Silva Ribeiro & Lauro Henrique Hamoy Guerreiro & Lucas Pinto Bernar & Sami Jonatan Bremer & Marcelo Costa Santo & Hélio da Silva Almeida & Sergio Duv, 2021. "Production of Fuel-Like Fractions by Fractional Distillation of Bio-Oil from Açaí ( Euterpe oleracea Mart.) Seeds Pyrolysis," Energies, MDPI, vol. 14(13), pages 1-27, June.
    4. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    5. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    6. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    8. Nuhu Isah & Abdul Talib Bon, 2017. "Application of Markov Model in Crude Oil Price Forecasting," Traektoriâ Nauki = Path of Science, Altezoro, s.r.o. & Dialog, vol. 3(8(25)), pages 1007-1012, August.
    9. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    10. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    11. Peng, Chuan & Feng, Wei & Zhang, Yanhui & Guo, Shifeng & Yang, Zhile & Liu, Xiangmin & Wang, Tengfei & Zhai, Yunbo, 2021. "Low temperature co-pyrolysis of food waste with PVC-derived char: Products distributions, char properties and mechanism of bio-oil upgrading," Energy, Elsevier, vol. 219(C).
    12. Yan, Kai & Wu, Guosheng & Lafleur, Todd & Jarvis, Cody, 2014. "Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 663-676.
    13. Ribeiro, Luiz Augusto Badan & Martins, Robson Cristiano & Mesa-Pérez, Juan Miguel & Bizzo, Waldir Antonio, 2019. "Study of bio-oil properties and ageing through fractionation and ternary mixtures with the heavy fraction as the main component," Energy, Elsevier, vol. 169(C), pages 344-355.
    14. Zhao, Chenxi & Lu, Xueying & Jiang, Zihao & Ma, Huan & Chen, Juhui & Liu, Xiaogang, 2024. "Prediction of bio-oil yield by machine learning model based on 'enhanced data' training," Renewable Energy, Elsevier, vol. 225(C).
    15. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    16. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    17. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    18. Leng, Lijian & Han, Pei & Yuan, Xingzhong & Li, Jun & Zhou, Wenguang, 2018. "Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges," Energy, Elsevier, vol. 153(C), pages 1061-1072.
    19. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    20. Leng, Lijian & Yuan, Xingzhong & Chen, Xiaohong & Huang, Huajun & Wang, Hou & Li, Hui & Zhu, Ren & Li, Shanxing & Zeng, Guangming, 2015. "Characterization of liquefaction bio-oil from sewage sludge and its solubilization in diesel microemulsion," Energy, Elsevier, vol. 82(C), pages 218-228.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:248-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.