IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015458.html
   My bibliography  Save this article

Platform chemicals recovery from spent coffee grounds aqueous-phase pyrolysis oil

Author

Listed:
  • Bartolucci, L.
  • Cordiner, S.
  • Di Carlo, A.
  • Gallifuoco, A.
  • Mele, P.
  • Mulone, V.

Abstract

Spent coffee grounds (SCG) are a valuable biogenic waste diffused on a global scale, containing a significant amount of extractives. The aim of this study is to characterize the pyrolysis oil fractions, under various process conditions, targeting their potential applications as biofuels and source of valuable chemicals. Pyrolysis tests were carried out in the range of 400–550 °C with a laboratory-scale screw reactor and a two-step solvent extraction process, was conducted for the aqueous bio-oil phase. The results showed that heavy organic bio-oil resulted in a carbon rich biofuel, with a carbon content of up to 63 % (w/w) and HHV up to 34.8 MJ/kg. Chloroform was selective in extracting xantines (68–74 % of the peak area), furans, phenols, and fatty acids from the aqueous phase, while the ethyl acetate extract was abundant in p-benzoquinone (70–83 % of the peak area), a key-player chemical for the petrochemical industry. The residual unextracted water phase is very rich in organic acids i.e. acetic, propionic, and formic-whose concentration is in the range 47 g/L and 87.9 g/L. The results of this study outline how solvent extraction is a promising technique for extracting valuable chemicals to improve the economic potential of spent coffee grounds pyrolysis-based biorefinery.

Suggested Citation

  • Bartolucci, L. & Cordiner, S. & Di Carlo, A. & Gallifuoco, A. & Mele, P. & Mulone, V., 2024. "Platform chemicals recovery from spent coffee grounds aqueous-phase pyrolysis oil," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015458
    DOI: 10.1016/j.renene.2023.119630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Yang & Hao Chen & Haibo Niu & Josiah McNutt & Quan He, 2021. "A Comparative Study on Thermochemical Valorization Routes for Spent Coffee Grounds," Energies, MDPI, vol. 14(13), pages 1-10, June.
    2. Battista, Federico & Zanzoni, Serena & Strazzera, Giuseppe & Andreolli, Marco & Bolzonella, David, 2020. "The cascade biorefinery approach for the valorization of the spent coffee grounds," Renewable Energy, Elsevier, vol. 157(C), pages 1203-1211.
    3. Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.
    4. Kirtika Kohli & Ravindra Prajapati & Brajendra K. Sharma, 2019. "Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries," Energies, MDPI, vol. 12(2), pages 1-40, January.
    5. Aparecida da Silveira Rossi, Raíssa & Barbosa, Janaína Miranda & Antonio de Souza Barrozo, Marcos & Martins Vieira, Luiz Gustavo, 2021. "Solar assisted catalytic thermochemical processes: pyrolysis and hydropyrolysis of Chlamydomonas reinhardtii microalgae," Renewable Energy, Elsevier, vol. 170(C), pages 669-682.
    6. Bok, Jin Pil & Choi, Hang Seok & Choi, Yeon Seok & Park, Hoon Chae & Kim, Seock Joon, 2012. "Fast pyrolysis of coffee grounds: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 47(1), pages 17-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battista, Federico & Barampouti, Elli Maria & Mai, Sofia & Bolzonella, David & Malamis, Dimitris & Moustakas, Konstantinos & Loizidou, Maria, 2020. "Added-value molecules recovery and biofuels production from spent coffee grounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    3. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Diana Constantinescu-Aruxandei & Florin Oancea, 2023. "Closing the Nutrient Loop—The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes," IJERPH, MDPI, vol. 20(3), pages 1-52, January.
    5. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    6. Choi, Sang Kyu & Choi, Yeon Seok & Han, So Young & Kim, Seock Joon & Rahman, Tawsif & Jeong, Yeon Woo & Van Nguyen, Quynh & Cha, Young Rok, 2019. "Bio-crude oil production from a new genotype of Miscanthus sacchariflorus Geodae-Uksae 1," Renewable Energy, Elsevier, vol. 144(C), pages 153-158.
    7. Cardarelli, Alessandro & Pinzi, Sara & Barbanera, Marco, 2022. "Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics," Renewable Energy, Elsevier, vol. 185(C), pages 704-716.
    8. Weiguo Dong & Zhiwen Chen & Jiacong Chen & Zhao Jia Ting & Rui Zhang & Guozhao Ji & Ming Zhao, 2022. "A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes," Energies, MDPI, vol. 15(7), pages 1-14, April.
    9. Li Ji & Pengfei Li & Fuhou Lei & Xianliang Song & Jianxin Jiang & Kun Wang, 2020. "Coproduction of Furfural, Phenolated Lignin and Fermentable Sugars from Bamboo with One-Pot Fractionation Using Phenol-Acidic 1,4-Dioxane," Energies, MDPI, vol. 13(20), pages 1-17, October.
    10. Hamed, A.S.A. & Yusof, N.I.F.M. & Yahya, M.S. & Cardozo, E. & Munajat, N.F., 2023. "Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Cai, Xin & Wang, Zhichao & Ye, Yueyuan & Wang, Duo & Zhang, Zhaoxia & Zheng, Zhifeng & Liu, Yunquan & Li, Shuirong, 2021. "Conversion of chitin biomass into 5-hydroxymethylfurfural: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Pomeroy, Brett & Grilc, Miha & Likozar, Blaž, 2022. "Artificial neural networks for bio-based chemical production or biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Aristide Giuliano, 2023. "The Transition of Scientific Research from Biomass-to-Energy/Biofuels to Biomass-to-Biochemicals in a Biorefinery Systems Framework," Energies, MDPI, vol. 16(5), pages 1-4, February.
    14. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    15. Akinola David Olugbemide & Ana Oberlintner & Uroš Novak & Blaž Likozar, 2021. "Lignocellulosic Corn Stover Biomass Pre-Treatment by Deep Eutectic Solvents (DES) for Biomethane Production Process by Bioresource Anaerobic Digestion," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    16. Parvez, Ashak Mahmud & Lewis, Jonathan David & Afzal, Muhammad T., 2021. "Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Nneka B. Ekwe & Maksim V. Tyufekchiev & Ali A. Salifu & Klaus Schmidt-Rohr & Zhaoxi Zheng & Alex R. Maag & Geoffrey A. Tompsett & Charles M. Cai & Emmanuel O. Onche & Ayten Ates & Winston O. Soboyejo , 2022. "Bamboo as a Cost-Effective Source of Renewable Carbon for Sustainable Economic Development in Low- and Middle-Income Economies," Energies, MDPI, vol. 16(1), pages 1-17, December.
    18. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    19. Marcus P. B. Martins & Carla E. Hori & Marcos A. S. Barrozo & Luiz G. M. Vieira, 2022. "Solar Pyrolysis of Spirulina platensis Assisted by Fresnel Lens Using Hydrocalumite-Type Precursors," Energies, MDPI, vol. 15(20), pages 1-19, October.
    20. Guzelciftci, Begum & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Production of phenol-rich bio-oil via a two-stage pyrolysis of wood," Energy, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.