IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p233-d197328.html
   My bibliography  Save this article

Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries

Author

Listed:
  • Kirtika Kohli

    (Prairie Research Institute—Illinois Sustainable Technology Center, University of Illinois, Urbana Champaign, IL 61820, USA)

  • Ravindra Prajapati

    (Conversions & Catalysis Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand 248005, India)

  • Brajendra K. Sharma

    (Prairie Research Institute—Illinois Sustainable Technology Center, University of Illinois, Urbana Champaign, IL 61820, USA)

Abstract

The production of chemicals from biomass, a renewable feedstock, is highly desirable in replacing petrochemicals to make biorefineries more economical. The best approach to compete with fossil-based refineries is the upgradation of biomass in integrated biorefineries. The integrated biorefineries employed various biomass feedstocks and conversion technologies to produce biofuels and bio-based chemicals. Bio-based chemicals can help to replace a large fraction of industrial chemicals and materials from fossil resources. Biomass-derived chemicals, such as 5-hydroxymethylfurfural (5-HMF), levulinic acid, furfurals, sugar alcohols, lactic acid, succinic acid, and phenols, are considered platform chemicals. These platform chemicals can be further used for the production of a variety of important chemicals on an industrial scale. However, current industrial production relies on relatively old and inefficient strategies and low production yields, which have decreased their competitiveness with fossil-based alternatives. The aim of the presented review is to provide a survey of past and current strategies used to achieve a sustainable conversion of biomass to platform chemicals. This review provides an overview of the chemicals obtained, based on the major components of lignocellulosic biomass, sugars, and lignin. First, important platform chemicals derived from the catalytic conversion of biomass were outlined. Later, the targeted chemicals that can be potentially manufactured from the starting or platform materials were discussed in detail. Despite significant advances, however, low yields, complex multistep synthesis processes, difficulties in purification, high costs, and the deactivation of catalysts are still hurdles for large-scale competitive biorefineries. These challenges could be overcome by single-step catalytic conversions using highly efficient and selective catalysts and exploring purification and separation technologies.

Suggested Citation

  • Kirtika Kohli & Ravindra Prajapati & Brajendra K. Sharma, 2019. "Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries," Energies, MDPI, vol. 12(2), pages 1-40, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:233-:d:197328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang, Shimin & Li, Xianglan & Fan, Juan & Chang, Jie, 2013. "Hydrothermal conversion of lignin: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 546-558.
    2. Agarwal, Bhumica & Kailasam, Kamalakannan & Sangwan, Rajender Singh & Elumalai, Sasikumar, 2018. "Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2408-2425.
    3. Wang, Wenliang & Li, Xinping & Ye, Dan & Cai, LiPing & Shi, Sheldon Q., 2018. "Catalytic pyrolysis of larch sawdust for phenol-rich bio-oil using different catalysts," Renewable Energy, Elsevier, vol. 121(C), pages 146-152.
    4. Mathew D. Hughes & Yi-Jun Xu & Patrick Jenkins & Paul McMorn & Philip Landon & Dan I. Enache & Albert F. Carley & Gary A. Attard & Graham J. Hutchings & Frank King & E. Hugh Stitt & Peter Johnston & K, 2005. "Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions," Nature, Nature, vol. 437(7062), pages 1132-1135, October.
    5. Yuriy Román-Leshkov & Christopher J. Barrett & Zhen Y. Liu & James A. Dumesic, 2007. "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates," Nature, Nature, vol. 447(7147), pages 982-985, June.
    6. Saxena, R.C. & Adhikari, D.K. & Goyal, H.B., 2009. "Biomass-based energy fuel through biochemical routes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 167-178, January.
    7. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Ji & Pengfei Li & Fuhou Lei & Xianliang Song & Jianxin Jiang & Kun Wang, 2020. "Coproduction of Furfural, Phenolated Lignin and Fermentable Sugars from Bamboo with One-Pot Fractionation Using Phenol-Acidic 1,4-Dioxane," Energies, MDPI, vol. 13(20), pages 1-17, October.
    2. Cai, Xin & Wang, Zhichao & Ye, Yueyuan & Wang, Duo & Zhang, Zhaoxia & Zheng, Zhifeng & Liu, Yunquan & Li, Shuirong, 2021. "Conversion of chitin biomass into 5-hydroxymethylfurfural: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Diana Constantinescu-Aruxandei & Florin Oancea, 2023. "Closing the Nutrient Loop—The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes," IJERPH, MDPI, vol. 20(3), pages 1-52, January.
    4. Pomeroy, Brett & Grilc, Miha & Likozar, Blaž, 2022. "Artificial neural networks for bio-based chemical production or biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Aristide Giuliano, 2023. "The Transition of Scientific Research from Biomass-to-Energy/Biofuels to Biomass-to-Biochemicals in a Biorefinery Systems Framework," Energies, MDPI, vol. 16(5), pages 1-4, February.
    6. Ibrahim, Qusay & Arauzo, Pablo J. & Kruse, Andrea, 2020. "The effect of using different acids to catalyze the prehydrolysis stage on the organosolv delignification of beech wood in two-stage process," Renewable Energy, Elsevier, vol. 153(C), pages 1479-1487.
    7. Guzelciftci, Begum & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Production of phenol-rich bio-oil via a two-stage pyrolysis of wood," Energy, Elsevier, vol. 200(C).
    8. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Martyna Przydacz & Marcin Jędrzejczyk & Jacek Rogowski & Małgorzata Szynkowska-Jóźwik & Agnieszka M. Ruppert, 2020. "Highly Efficient Production of DMF from Biomass-Derived HMF on Recyclable Ni-Fe/TiO 2 Catalysts," Energies, MDPI, vol. 13(18), pages 1-14, September.
    10. Bartolucci, L. & Cordiner, S. & Di Carlo, A. & Gallifuoco, A. & Mele, P. & Mulone, V., 2024. "Platform chemicals recovery from spent coffee grounds aqueous-phase pyrolysis oil," Renewable Energy, Elsevier, vol. 220(C).
    11. Akinola David Olugbemide & Ana Oberlintner & Uroš Novak & Blaž Likozar, 2021. "Lignocellulosic Corn Stover Biomass Pre-Treatment by Deep Eutectic Solvents (DES) for Biomethane Production Process by Bioresource Anaerobic Digestion," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    12. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    13. Sigrid Kusch-Brandt & Mohammad A. T. Alsheyab, 2021. "Wastewater Refinery: Producing Multiple Valuable Outputs from Wastewater," J, MDPI, vol. 4(1), pages 1-11, February.
    14. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Parvez, Ashak Mahmud & Lewis, Jonathan David & Afzal, Muhammad T., 2021. "Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Nneka B. Ekwe & Maksim V. Tyufekchiev & Ali A. Salifu & Klaus Schmidt-Rohr & Zhaoxi Zheng & Alex R. Maag & Geoffrey A. Tompsett & Charles M. Cai & Emmanuel O. Onche & Ayten Ates & Winston O. Soboyejo , 2022. "Bamboo as a Cost-Effective Source of Renewable Carbon for Sustainable Economic Development in Low- and Middle-Income Economies," Energies, MDPI, vol. 16(1), pages 1-17, December.
    17. Thombal, Priyanka Raju & Thombal, Raju S. & Han, Sung Soo, 2021. "Comprehensive study on the catalytic methods for furyl alkane synthesis: A promising biodiesel precursor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
    2. Yang, Fengli & Weng, Jushi & Ding, Jiajing & Zhao, Zhiyan & Qin, Lizhen & Xia, Feifei, 2020. "Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite," Renewable Energy, Elsevier, vol. 151(C), pages 829-836.
    3. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    5. Matteo Borella & Alessandro A. Casazza & Gabriella Garbarino & Paola Riani & Guido Busca, 2022. "A Study of the Pyrolysis Products of Kraft Lignin," Energies, MDPI, vol. 15(3), pages 1-15, January.
    6. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    7. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    8. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    9. Wang, Ping & Liu, Chaoqi & Chang, Juan & Yin, Qingqiang & Huang, Weiwei & Liu, Yang & Dang, Xiaowei & Gao, Tianzeng & Lu, Fushan, 2019. "Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw," Renewable Energy, Elsevier, vol. 138(C), pages 502-508.
    10. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    11. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    12. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    13. David Bannon & Mirka Deza & Masoud Masoumi & Bahareh Estejab, 2023. "Assessment of Irregular Biomass Particles Fluidization in Bubbling Fluidized Beds," Energies, MDPI, vol. 16(4), pages 1-20, February.
    14. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Pätäri, Satu & Puumalainen, Kaisu & Jantunen, Ari & Sandstrüm, Jaana, 2011. "The interface of the energy and forest sectors--Potential players in the bioenergy business," International Journal of Production Economics, Elsevier, vol. 131(1), pages 322-332, May.
    16. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    17. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    18. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    19. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    20. Carvalho, Lara & Furusjö, Erik & Ma, Chunyan & Ji, Xiaoyan & Lundgren, Joakim & Hedlund, Jonas & Grahn, Mattias & Öhrman, Olov G.W. & Wetterlund, Elisabeth, 2018. "Alkali enhanced biomass gasification with in situ S capture and a novel syngas cleaning. Part 2: Techno-economic assessment," Energy, Elsevier, vol. 165(PB), pages 471-482.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:233-:d:197328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.