IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v131y2020ics1364032120302987.html
   My bibliography  Save this article

Added-value molecules recovery and biofuels production from spent coffee grounds

Author

Listed:
  • Battista, Federico
  • Barampouti, Elli Maria
  • Mai, Sofia
  • Bolzonella, David
  • Malamis, Dimitris
  • Moustakas, Konstantinos
  • Loizidou, Maria

Abstract

Spent Coffee Grounds worldwide production is estimated at around 6 M tons only at industrial level. The abundance and the heterogeneity of this substrate make it an ideal substrate for a biorefinery approach based on the “cascade biorefinery hierarchy”. Currently, the major part of spent coffee grounds is sent to incineration and landfill disposal, options which should be avoided. Instead, they could be valorised through biofuels production. All the operational parameters leading to the highest biogas (350-400LCH4/kgTVS), bioethanol (3–4%v/v) and biodiesel (over 90% of Fatty Acid Methyl Esters concentration) yields from spent coffee grounds have been discussed in this review paper. They are rich in an oil phase containing different added-value molecules (tocopherols, cafestol, kahweol along with linoleic and palmitic acids), which can be extracted and used as additives for food, cosmetic and pharmaceutical applications. Solid/liquid extraction techniques of coffee oil from spent coffee grounds such as the most common Soxhlet technique and the more innovative fluids in supercritical conditions have been discussed, with coffee oil recovery of around 5–15%w/w and 15–20%w/w, respectively. The most recent applications of the extracted coffee oil have been also presented: the added-value molecules recovery and purification after micro/ultra and nano filtrations processes and the polyhydroxyalkanoates (0.84 g/g) and biosurfactants (3.5 g/L) production. Considering the whole information, an integrated biorefinery scheme, along with the respective mass balances were proposed. The novelty of this paper lies in the integration of the state-of-the-art data, in a biorefinery concept that would allow the production of both biofuels and value-added products.

Suggested Citation

  • Battista, Federico & Barampouti, Elli Maria & Mai, Sofia & Bolzonella, David & Malamis, Dimitris & Moustakas, Konstantinos & Loizidou, Maria, 2020. "Added-value molecules recovery and biofuels production from spent coffee grounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120302987
    DOI: 10.1016/j.rser.2020.110007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120302987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yasar, Abdullah & Rasheed, Rizwan & Tabinda, Amtul Bari & Tahir, Aleena & Sarwar, Friha, 2017. "Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 364-371.
    2. Freitas de Medeiros, Eliane & da Silva Afonso, Marcela & Ziemann dos Santos, Marco Aurélio & Bento, Fátima Menezes & Quadro, Maurízio Silveira & Andreazza, Robson, 2019. "Physicochemical characterization of oil extraction from fishing waste for biofuel production," Renewable Energy, Elsevier, vol. 143(C), pages 471-477.
    3. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    4. Afolabi, Oluwasola O.D. & Sohail, M. & Cheng, Yu-Ling, 2020. "Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation," Renewable Energy, Elsevier, vol. 147(P1), pages 1380-1391.
    5. Battista, Federico & Zanzoni, Serena & Strazzera, Giuseppe & Andreolli, Marco & Bolzonella, David, 2020. "The cascade biorefinery approach for the valorization of the spent coffee grounds," Renewable Energy, Elsevier, vol. 157(C), pages 1203-1211.
    6. Danbee Kim & Jaai Kim & Changsoo Lee, 2018. "Effect of Mild-Temperature Thermo-Alkaline Pretreatment on the Solubilization and Anaerobic Digestion of Spent Coffee Grounds," Energies, MDPI, vol. 11(4), pages 1-14, April.
    7. Fiore, S. & Ruffino, B. & Campo, G. & Roati, C. & Zanetti, M.C., 2016. "Scale-up evaluation of the anaerobic digestion of food-processing industrial wastes," Renewable Energy, Elsevier, vol. 96(PA), pages 949-959.
    8. Bok, Jin Pil & Choi, Hang Seok & Choi, Yeon Seok & Park, Hoon Chae & Kim, Seock Joon, 2012. "Fast pyrolysis of coffee grounds: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 47(1), pages 17-24.
    9. Mueanmas, Chokchai & Nikhom, Ruamporn & Petchkaew, Anida & Iewkittayakorn, Jutarut & Prasertsit, Kulchanart, 2019. "Extraction and esterification of waste coffee grounds oil as non-edible feedstock for biodiesel production," Renewable Energy, Elsevier, vol. 133(C), pages 1414-1425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirna Brekalo & Blanka Bilić Rajs & Krunoslav Aladić & Lidija Jakobek & Zita Šereš & Saša Krstović & Stela Jokić & Sandra Budžaki & Ivica Strelec, 2023. "Multistep Extraction Transformation of Spent Coffee Grounds to the Cellulose-Based Enzyme Immobilization Carrier," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    2. Anne Shayene Campos de Bomfim & Daniel Magalhães de Oliveira & Eric Walling & Alexandre Babin & Grégory Hersant & Céline Vaneeckhaute & Marie-Josée Dumont & Denis Rodrigue, 2022. "Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment," Waste, MDPI, vol. 1(1), pages 1-19, August.
    3. Valentína Kafková & Róbert Kubinec & Jozef Mikulec & Miroslav Variny & Petra Ondrejíčková & Aleš Ház & Adriana Brisudová, 2023. "Integrated Approach to Spent Coffee Grounds Valorization in Biodiesel Biorefinery," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    4. Rijo, Bruna & Soares Dias, Ana Paula & Ramos, Marta & de Jesus, Nicole & Puna, Jaime, 2021. "Catalyzed pyrolysis of coffee and tea wastes," Energy, Elsevier, vol. 235(C).
    5. Giannakis, Nikos & Carmona-Cabello, Miguel & Makri, Aikaterini & Leiva-Candia, David & Filippi, Katiana & Argeiti, Chrysanthi & Pateraki, Chrysanthi & Dorado, M.P. & Koutinas, Apostolis & Stylianou, E, 2023. "Spent coffee grounds and orange peel residues based biorefinery for microbial oil and biodiesel conversion estimation," Renewable Energy, Elsevier, vol. 209(C), pages 382-392.
    6. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Andreana N. Assimopoulou, 2021. "Spent Coffee Grounds’ Valorization towards the Recovery of Caffeine and Chlorogenic Acid: A Response Surface Methodology Approach," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    7. Tomasz Matula & Jerzy Labaj & Krzysztof Nowacki & Leszek Blacha & Lukasz Kortyka & Lukasz Mycka & Piotr Madej & Lukasz Jaworek & Tomasz Wojtal, 2023. "Application of Spent Coffee Grounds (SCGs) as a Fuel and Alternative Reducer of Slags from the Copper Industry," Energies, MDPI, vol. 16(5), pages 1-17, March.
    8. Josefa Fernández-Ferreras & Tamara Llano & María K. Kochaniec & Alberto Coz, 2023. "Slow Pyrolysis of Specialty Coffee Residues towards the Circular Economy in Rural Areas," Energies, MDPI, vol. 16(5), pages 1-21, February.
    9. Rajesh Banu, J. & Yukesh Kannah, R. & Dinesh Kumar, M. & Preethi, & Kavitha, S. & Gunasekaran, M. & Zhen, Guangyin & Awasthi, Mukesh Kumar & Kumar, Gopalakrishnan, 2021. "Spent coffee grounds based circular bioeconomy: Technoeconomic and commercialization aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Grira, Soumaya & Abu Khalifeh, Hadil & Alkhedher, Mohammad & Ramadan, Mohamad, 2023. "The conventional microalgal biofuel production process and the alternative milking pathway: A review," Energy, Elsevier, vol. 277(C).
    11. Jung Eun Park & Gi Bbum Lee & Cheol Jin Jeong & Ho Kim & Choong Gon Kim, 2021. "Determination of Relationship between Higher Heating Value and Atomic Ratio of Hydrogen to Carbon in Spent Coffee Grounds by Hydrothermal Carbonization," Energies, MDPI, vol. 14(20), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. E. Atabani & Eyas Mahmoud & Muhammed Aslam & Salman Raza Naqvi & Dagmar Juchelková & Shashi Kant Bhatia & Irfan Anjum Badruddin & T. M. Yunus Khan & Anh Tuan Hoang & Petr Palacky, 2023. "Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7585-7623, August.
    2. Tomasz Matula & Jerzy Labaj & Krzysztof Nowacki & Leszek Blacha & Lukasz Kortyka & Lukasz Mycka & Piotr Madej & Lukasz Jaworek & Tomasz Wojtal, 2023. "Application of Spent Coffee Grounds (SCGs) as a Fuel and Alternative Reducer of Slags from the Copper Industry," Energies, MDPI, vol. 16(5), pages 1-17, March.
    3. Rajesh Banu, J. & Yukesh Kannah, R. & Dinesh Kumar, M. & Preethi, & Kavitha, S. & Gunasekaran, M. & Zhen, Guangyin & Awasthi, Mukesh Kumar & Kumar, Gopalakrishnan, 2021. "Spent coffee grounds based circular bioeconomy: Technoeconomic and commercialization aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    5. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    7. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    8. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    9. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    10. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    11. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    12. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    13. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    14. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    15. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    16. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    17. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    18. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    19. Biranchi Panda & K. Shankhwar & Akhil Garg & M. M. Savalani, 2019. "Evaluation of genetic programming-based models for simulating bead dimensions in wire and arc additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 809-820, February.
    20. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120302987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.