IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i10p4142-4148.html
   My bibliography  Save this article

Castor oil transesterification reaction: A kinetic study and optimization of parameters

Author

Listed:
  • Ramezani, K.
  • Rowshanzamir, S.
  • Eikani, M.H.

Abstract

In this paper, parameters affecting castor oil transesterification reaction were investigated. Applying four basic catalysts including NaOCH3, NaOH, KOCH3 and KOH the best one with maximum biodiesel yield was identified. Using Taguchi method consisting four parameters and three levels, the best experimental conditions were determined. Reaction temperature (25, 65 and 80°C), mixing intensity (250, 400 and 600rpm), alcohol/oil ratio (4:1, 6:1 and 8:1) and catalyst concentration (0.25, 0.35 and 0.5%) were selected as experimental parameters. It was concluded that reaction temperature and mixing intensity can be optimized. Using the optimum results, we proposed a kinetic model which resulted in establishing an equation for the beginning rate of transesterification reaction. Furthermore, applying ASTM D 976 correlation, minimum cetane number of produced biodiesel was determined as 37.1.

Suggested Citation

  • Ramezani, K. & Rowshanzamir, S. & Eikani, M.H., 2010. "Castor oil transesterification reaction: A kinetic study and optimization of parameters," Energy, Elsevier, vol. 35(10), pages 4142-4148.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:10:p:4142-4148
    DOI: 10.1016/j.energy.2010.06.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210003579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.06.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agra, I.B. & Warnijati, S. & Wiratni,, 1996. "Two steps ethanolysis of castor oil using sulfuric acid as catalist to produce motor oil," Renewable Energy, Elsevier, vol. 9(1), pages 1025-1028.
    2. Albuquerque, M.C.G. & Machado, Y.L. & Torres, A.E.B. & Azevedo, D.C.S. & Cavalcante, C.L. & Firmiano, L.R. & Parente, E.J.S., 2009. "Properties of biodiesel oils formulated using different biomass sources and their blends," Renewable Energy, Elsevier, vol. 34(3), pages 857-859.
    3. Janaun, Jidon & Ellis, Naoko, 2010. "Perspectives on biodiesel as a sustainable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1312-1320, May.
    4. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    5. Conceição, Marta M. & Candeia, Roberlúcia A. & Silva, Fernando C. & Bezerra, Aline F. & Fernandes, Valter Jr. & Souza, Antonio G., 2007. "Thermoanalytical characterization of castor oil biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 964-975, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Jin & Praveen Kolar & Steven W. Peretti & Jason A. Osborne & Jay J. Cheng, 2017. "Kinetics and Mechanism of NaOH-Impregnated Calcined Oyster Shell-Catalyzed Transesterification of Soybean Oil," Energies, MDPI, vol. 10(11), pages 1-18, November.
    2. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    3. López, I. & Pinzi, S. & Leiva-Candia, D. & Dorado, M.P., 2016. "Multiple response optimization to reduce exhaust emissions and fuel consumption of a diesel engine fueled with olive pomace oil methyl ester/diesel fuel blends," Energy, Elsevier, vol. 117(P2), pages 398-404.
    4. Perdomo-Hurtado, Luis & Rincón Tabares, Juan Sebastián & Correa, Danahe Marmolejo & Perdomo, Felipe A., 2017. "Castor oil preheater selection based on entropy generation and exergy effectiveness criteria," Energy, Elsevier, vol. 120(C), pages 805-815.
    5. Akhabue, Christopher Ehiaguina & Osa-Benedict, Evidence Osayi & Oyedoh, Eghe Amenze & Otoikhian, Shegun Kevin, 2020. "Development of a bio-based bifunctional catalyst for simultaneous esterification and transesterification of neem seed oil: Modeling and optimization studies," Renewable Energy, Elsevier, vol. 152(C), pages 724-735.
    6. Arridina Susan Silitonga & Teuku Meurah Indra Mahlia & Abd Halim Shamsuddin & Hwai Chyuan Ong & Jassinnee Milano & Fitranto Kusumo & Abdi Hanra Sebayang & Surya Dharma & Husin Ibrahim & Hazlina Husin , 2019. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
    7. Silva, Wellington Costa & Castro, Maria Priscila Pessanha & Perez, Victor Haber & Machado, Francisco A. & Mota, Leonardo & Sthel, Marcelo Silva, 2016. "Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation," Energy, Elsevier, vol. 114(C), pages 1093-1099.
    8. Ezzati, Rohollah & Ranjbar, Shahram & Soltanabadi, Azim, 2021. "Kinetics models of transesterification reaction for biodiesel production: A theoretical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 280-296.
    9. Endalew, Abebe K. & Kiros, Yohannes & Zanzi, Rolando, 2011. "Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO)," Energy, Elsevier, vol. 36(5), pages 2693-2700.
    10. Aboelazayem, Omar & El-Gendy, Nour Sh. & Abdel-Rehim, Ahmed A. & Ashour, Fatma & Sadek, Mohamed A., 2018. "Biodiesel production from castor oil in Egypt: Process optimisation, kinetic study, diesel engine performance and exhaust emissions analysis," Energy, Elsevier, vol. 157(C), pages 843-852.
    11. Thakkar, Kartikkumar & Kachhwaha, Surendra Singh & Kodgire, Pravin & Srinivasan, Seshasai, 2021. "Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Vieira, Bruno & Nadaleti, Willian Cézar & Sarto, Ewerson, 2021. "The effect of the addition of castor oil to residual soybean oil to obtain biodiesel in Brazil: Energy matrix diversification," Renewable Energy, Elsevier, vol. 165(P1), pages 657-667.
    13. Dias, J.M. & Araújo, J.M. & Costa, J.F. & Alvim-Ferraz, M.C.M. & Almeida, M.F., 2013. "Biodiesel production from raw castor oil," Energy, Elsevier, vol. 53(C), pages 58-66.
    14. Kaur, Ravneet & Gera, Poonam & Jha, Mithilesh Kumar & Bhaskar, Thallada, 2019. "Reaction parameters effect on hydrothermal liquefaction of castor (Ricinus Communis) residue for energy and valuable hydrocarbons recovery," Renewable Energy, Elsevier, vol. 141(C), pages 1026-1041.
    15. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    16. Ko, Chun-Han & Yeh, Kai-Wun & Wang, Ya-Nang & Wu, Chien-Hou & Chang, Fang-Chih & Cheng, Ming-Hsun & Liou, Chia-Shin, 2012. "Impact of methanol addition strategy on enzymatic transesterification of jatropha oil for biodiesel processing," Energy, Elsevier, vol. 48(1), pages 375-379.
    17. José María Encinar & Ana Pardal & Nuria Sánchez & Sergio Nogales, 2018. "Biodiesel by Transesterification of Rapeseed Oil Using Ultrasound: A Kinetic Study of Base-Catalysed Reactions," Energies, MDPI, vol. 11(9), pages 1-13, August.
    18. Arunkumar, M. & Kannan, M. & Murali, G., 2019. "Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine," Renewable Energy, Elsevier, vol. 131(C), pages 737-744.
    19. Niu, Shengli & Zhou, Yan & Li, Hui & Lu, Chunmei & Liu, Li, 2015. "An investigation on the catalytic capability of the modified white mud after activation in transesterification and kinetic calculation," Energy, Elsevier, vol. 89(C), pages 982-989.
    20. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    21. Torrentes-Espinoza, G. & Miranda, B.C. & Vega-Baudrit, J. & Mata-Segreda, Julio F., 2017. "Castor oil (Ricinus communis) supercritical methanolysis," Energy, Elsevier, vol. 140(P1), pages 426-435.
    22. Satyanarayana, M. & Muraleedharan, C., 2011. "A comparative study of vegetable oil methyl esters (biodiesels)," Energy, Elsevier, vol. 36(4), pages 2129-2137.
    23. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    2. Chen, Yi-Hung & Chen, Jhih-Hong & Luo, Yu-Min, 2012. "Complementary biodiesel combination from tung and medium-chain fatty acid oils," Renewable Energy, Elsevier, vol. 44(C), pages 305-310.
    3. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    4. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    5. Agarwal, Swati & Kumari, Sonu & Mudgal, Anurag & Khan, Suphiya, 2020. "Green synthesized nanoadditives in jojoba biodiesel-diesel blends: An improvement of engine performance and emission," Renewable Energy, Elsevier, vol. 147(P1), pages 1836-1844.
    6. Long, Yun-Duo & Fang, Zhen & Su, Tong-Chao & Yang, Qing, 2014. "Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts," Applied Energy, Elsevier, vol. 113(C), pages 1819-1825.
    7. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    8. Jahirul, M.I. & Rasul, M.G. & Brown, R.J. & Senadeera, W. & Hosen, M.A. & Haque, R. & Saha, S.C. & Mahlia, T.M.I., 2021. "Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN)," Renewable Energy, Elsevier, vol. 168(C), pages 632-646.
    9. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayin, Cenk, 2019. "The best fuel selection with hybrid multiple-criteria decision making approaches in a CI engine fueled with their blends and pure biodiesels produced from different sources," Renewable Energy, Elsevier, vol. 134(C), pages 653-668.
    10. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    11. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    12. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    13. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
    14. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Mathimani, Thangavel & Uma, Lakshmanan & Prabaharan, Dharmar, 2015. "Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization," Renewable Energy, Elsevier, vol. 81(C), pages 523-533.
    16. Tesfa, B. & Mishra, R. & Gu, F. & Powles, N., 2010. "Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines," Renewable Energy, Elsevier, vol. 35(12), pages 2752-2760.
    17. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    18. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    19. Baskar, G. & Aiswarya, R., 2016. "Trends in catalytic production of biodiesel from various feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 496-504.
    20. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:10:p:4142-4148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.