IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021462.html
   My bibliography  Save this article

Input-output model for forecasting economic and environmental effects of smart meters deployment in Poland

Author

Listed:
  • Lach, Łukasz
  • Kopeć, Sławomir
  • Heller, Krzysztof
  • Zyśk, Janusz
  • Adamiec, Ewa
  • Kisiel-Dorohinicki, Marek
  • Brzoza-Zajęcka, Ada
  • Gaska, Krzysztof

Abstract

To the best of our knowledge this paper is the first attempt to estimate the macroeconomic and environmental effects that can be generated by widespread deployment of smart meters. The study applies macroeconomic data published by Central Statistical Office of Poland, and data developed in the framework of the Energy Transition Observatory (ETO) – a strategic project run by AGH University of Krakow, the Ministry of Climate and Environment of Poland, and the National Centre for Nuclear Research. Based on the collected dataset, unit investment and operational IO multipliers were calculated by means of an extended Leontief IO model, which set the ground for estimating the dynamics of three types of macroeconomic effects (employment, value added, global production) and climate and environmental effects (CO2 emissions), as well as the green energy production effects (feasible system and share of RES) for the three considered development scenarios of the discussed technology until 2040. The results show that it is possible to seek to maintain an almost constant level of approximately 6000 of full-time jobs in the smart meters industry in 2031–2040 in all the three scenarios under consideration. The proposed research framework may be straightforwardly applied in analogous case studies focused on other countries.

Suggested Citation

  • Lach, Łukasz & Kopeć, Sławomir & Heller, Krzysztof & Zyśk, Janusz & Adamiec, Ewa & Kisiel-Dorohinicki, Marek & Brzoza-Zajęcka, Ada & Gaska, Krzysztof, 2025. "Input-output model for forecasting economic and environmental effects of smart meters deployment in Poland," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021462
    DOI: 10.1016/j.energy.2025.136504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Alejandro Cardenete & Ferran Sancho, 2012. "The Role Of Supply Constraints In Multiplier Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 24(1), pages 21-34, June.
    2. Li, Mengjie & Du, Weijian, 2021. "Can Internet development improve the energy efficiency of firms: Empirical evidence from China," Energy, Elsevier, vol. 237(C).
    3. Chang, Lei & Taghizadeh-Hesary, Farhad & Saydaliev, Hayot Berk, 2022. "How do ICT and renewable energy impact sustainable development?," Renewable Energy, Elsevier, vol. 199(C), pages 123-131.
    4. Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
    5. Faruqui, Ahmad & Harris, Dan & Hledik, Ryan, 2010. "Unlocking the [euro]53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment," Energy Policy, Elsevier, vol. 38(10), pages 6222-6231, October.
    6. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    7. Sharma, A. & Rajpurohit, B.S. & Singh, S.N., 2018. "A review on economics of power quality: Impact, assessment and mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 363-372.
    8. Gans, Will & Alberini, Anna & Longo, Alberto, 2013. "Smart meter devices and the effect of feedback on residential electricity consumption: Evidence from a natural experiment in Northern Ireland," Energy Economics, Elsevier, vol. 36(C), pages 729-743.
    9. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    10. Fedorczak-Cisak, Małgorzata & Radziszewska-Zielina, Elżbieta & Nowak-Ocłoń, Marzena & Biskupski, Jacek & Jastrzębski, Paweł & Kotowicz, Anna & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "A concept to maximise energy self-sufficiency of the housing stock in central Europe based on renewable resources and efficiency improvement," Energy, Elsevier, vol. 278(C).
    11. Sharma, Konark & Mohan Saini, Lalit, 2015. "Performance analysis of smart metering for smart grid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 720-735.
    12. Zheng, Jiajia & Wang, Xingwu, 2021. "Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries," Energy Policy, Elsevier, vol. 149(C).
    13. Sung-Won Park & Sung-Yong Son, 2017. "Cost Analysis for a Hybrid Advanced Metering Infrastructure in Korea," Energies, MDPI, vol. 10(9), pages 1-18, September.
    14. Cezar-Petre Simion & Cătălin-Alexandru Verdeș & Alexandra-Andreea Mironescu & Florin-Gabriel Anghel, 2023. "Digitalization in Energy Production, Distribution, and Consumption: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-30, February.
    15. Olmos, Luis & Ruester, Sophia & Liong, Siok-Jen & Glachant, Jean-Michel, 2011. "Energy efficiency actions related to the rollout of smart meters for small consumers, application to the Austrian system," Energy, Elsevier, vol. 36(7), pages 4396-4409.
    16. Gerpott, Torsten J. & Paukert, Mathias, 2013. "Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany," Energy Policy, Elsevier, vol. 61(C), pages 483-495.
    17. Li, Wei & Cao, Ning & Xiang, Zejia, 2023. "Drivers of renewable energy transition: The role of ICT, human development, financialization, and R&D investment in China," Renewable Energy, Elsevier, vol. 206(C), pages 441-450.
    18. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    19. Luo, Shunjun & Chishti, Muhammad Zubair & Beata, Szetela & Xie, Peijun, 2024. "Digital sparks for a greener future: Unleashing the potential of information and communication technologies in green energy transition," Renewable Energy, Elsevier, vol. 221(C).
    20. Gosnell, Greer & McCoy, Daire, 2023. "Market failures and willingness to accept smart meters: Experimental evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    21. Carmichael, R. & Gross, R. & Hanna, R. & Rhodes, A. & Green, T., 2021. "The Demand Response Technology Cluster: Accelerating UK residential consumer engagement with time-of-use tariffs, electric vehicles and smart meters via digital comparison tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    22. Muthamizh Selvam, M. & Gnanadass, R. & Padhy, N.P., 2016. "Initiatives and technical challenges in smart distribution grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 911-917.
    23. Markovic, Dragan S. & Zivkovic, Dejan & Branovic, Irina & Popovic, Ranko & Cvetkovic, Dragan, 2013. "Smart power grid and cloud computing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 566-577.
    24. Mbungu, Nsilulu T. & Bansal, Ramesh C. & Naidoo, Raj M. & Bettayeb, Maamar & Siti, Mukwanga W. & Bipath, Minnesh, 2020. "A dynamic energy management system using smart metering," Applied Energy, Elsevier, vol. 280(C).
    25. Jingyi Zhang & Tongtian Sheng & Pan Gu & Miao Yu & Jiaxin Yan & Jianqun Sun & Shanhe Liu, 2024. "Dynamics Power Quality Cost Assessment Based on a Gradient Descent Method," Energies, MDPI, vol. 17(9), pages 1-14, April.
    26. Carroll, James & Lyons, Seán & Denny, Eleanor, 2014. "Reducing household electricity demand through smart metering: The role of improved information about energy saving," Energy Economics, Elsevier, vol. 45(C), pages 234-243.
    27. Vu, Khuong & Hanafizadeh, Payam & Bohlin, Erik, 2020. "ICT as a driver of economic growth: A survey of the literature and directions for future research," Telecommunications Policy, Elsevier, vol. 44(2).
    28. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    2. repec:osf:thesis:7zprk_v1 is not listed on IDEAS
    3. Zheng, Mingbo & Zhang, Xinyu, 2025. "Digitalization and renewable energy development: Analysis based on cross-country panel data," Energy, Elsevier, vol. 319(C).
    4. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Sheng JIANG & Allauddin Kakar & Anwar Khan, 2025. "Identifying the roles of governance, ICT, and financial development to facilitate renewable energy generation in BRICS countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 7193-7217, March.
    6. Shirley Pon, 2017. "The Effect of Information on TOU Electricity Use: an Irish residential study," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    7. Ding, Qian & Huang, Jianbai & Chen, Jinyu & Tao, Dali, 2023. "Internet development and renewable energy technological innovation: Does institutional quality matter?," Renewable Energy, Elsevier, vol. 218(C).
    8. Ya Wu & Yin Liu, 2025. "How does the digital economy affect urban CO2 emissions? Mechanism discussion and empirical test," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(6), pages 14097-14122, June.
    9. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    10. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    11. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    12. Luo, Shunjun & Chishti, Muhammad Zubair & Beata, Szetela & Xie, Peijun, 2024. "Digital sparks for a greener future: Unleashing the potential of information and communication technologies in green energy transition," Renewable Energy, Elsevier, vol. 221(C).
    13. Ma, Jinjin & Yang, Lin & Wang, Donghan & Li, Yiming & Xie, Zuomiao & Lv, Haodong & Woo, Donghyup, 2024. "Digitalization in response to carbon neutrality: Mechanisms, effects and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    14. Singhal, Puja, 2024. "Inform me when it matters: Cost salience, energy consumption, and efficiency investments," Energy Economics, Elsevier, vol. 133(C).
    15. LIU Xiangling & Md Qamruzzaman, 2024. "The role of ICT investment, digital financial inclusion, and environmental tax in promoting sustainable energy development in the MENA region: Evidences with Dynamic Common Correlated Effects (DCE) an," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-30, May.
    16. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    17. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    18. Doğan, Buhari & Khalfaoui, Rabeh & Bergougui, Brahim & Ghosh, Sudeshna, 2025. "Unveiling the impact of the digital economy on the interplay of energy transition, environmental transformation, and renewable energy adoption," Research in International Business and Finance, Elsevier, vol. 76(C).
    19. Yash Chawla & Anna Kowalska-Pyzalska & Widayat Widayat, 2019. "Consumer Willingness and Acceptance of Smart Meters in Indonesia," Resources, MDPI, vol. 8(4), pages 1-23, November.
    20. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    21. Guo, Bowei & Weeks, Melvyn, 2022. "Dynamic tariffs, demand response, and regulation in retail electricity markets," Energy Economics, Elsevier, vol. 106(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.