IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008874.html
   My bibliography  Save this article

Deep learning approaches for predicting the upward and downward energy prices in the Spanish automatic Frequency Restoration Reserve market

Author

Listed:
  • Failing, Johanna M.
  • Cardo-Miota, Javier
  • Pérez, Emilio
  • Beltran, Hector
  • Segarra-Tamarit, Jorge

Abstract

The integration of renewable energy sources (RES) into power systems presents significant challenges due to their inherent variability and stochastic nature. This has led to an increased reliance on Ancillary Services (ASs), particularly frequency regulation, to maintain grid stability. The automatic Frequency Restoration Reserve (aFRR) service is critical in addressing real-time imbalances in power systems. This paper introduces a detailed study of the Spanish frequency regulation markets and focuses on forecasting energy prices in the Spanish aFRR market using deep learning techniques. Specifically, three models — Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), and Long short-term memory (LSTM) – are employed to predict upward and downward aFRR energy prices. The study evaluates the effectiveness of these models using time series data from the Spanish power system and several performance metrics such as MAE and RMSE. A correlation study and a Sequential Backward Selection algorithm are proposed to select the inputs for each model. The results demonstrate the superiority of feedforward models for upward price forecasting, while convolutional models perform better for downward prices. These findings provide valuable insights for service providers aiming to optimize their bidding strategies in the Spanish aFRR market.

Suggested Citation

  • Failing, Johanna M. & Cardo-Miota, Javier & Pérez, Emilio & Beltran, Hector & Segarra-Tamarit, Jorge, 2025. "Deep learning approaches for predicting the upward and downward energy prices in the Spanish automatic Frequency Restoration Reserve market," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008874
    DOI: 10.1016/j.energy.2025.135245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Merten, Michael & Rücker, Fabian & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Automatic frequency restoration reserve market prediction: Methodology and comparison of various approaches," Applied Energy, Elsevier, vol. 268(C).
    2. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    3. Konstantinos Oureilidis & Kyriaki-Nefeli Malamaki & Konstantinos Gallos & Achilleas Tsitsimelis & Christos Dikaiakos & Spyros Gkavanoudis & Milos Cvetkovic & Juan Manuel Mauricio & Jose Maria Maza Ort, 2020. "Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers," Energies, MDPI, vol. 13(4), pages 1-44, February.
    4. Deng, Sinan & Inekwe, John & Smirnov, Vladimir & Wait, Andrew & Wang, Chao, 2024. "Seasonality in deep learning forecasts of electricity imbalance prices," Energy Economics, Elsevier, vol. 137(C).
    5. Kempitiya, Thimal & Sierla, Seppo & De Silva, Daswin & Yli-Ojanperä, Matti & Alahakoon, Damminda & Vyatkin, Valeriy, 2020. "An Artificial Intelligence framework for bidding optimization with uncertainty in multiple frequency reserve markets," Applied Energy, Elsevier, vol. 280(C).
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Hulshof, Daan & van der Maat, Jan-Pieter & Mulder, Machiel, 2016. "Market fundamentals, competition and natural-gas prices," Energy Policy, Elsevier, vol. 94(C), pages 480-491.
    8. Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).
    9. Amin Sokhanvar & Chien-Chiang Lee, 2023. "How do energy price hikes affect exchange rates during the war in Ukraine?," Empirical Economics, Springer, vol. 64(5), pages 2151-2164, May.
    10. Christian Giovanelli & Seppo Sierla & Ryutaro Ichise & Valeriy Vyatkin, 2018. "Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices," Energies, MDPI, vol. 11(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
    2. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    3. Fraunholz, Christoph & Kraft, Emil & Keles, Dogan & Fichtner, Wolf, 2021. "Advanced price forecasting in agent-based electricity market simulation," Applied Energy, Elsevier, vol. 290(C).
    4. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    5. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    6. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    7. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    8. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    9. Rakshith Subramanya & Matti Yli-Ojanperä & Seppo Sierla & Taneli Hölttä & Jori Valtakari & Valeriy Vyatkin, 2021. "A Virtual Power Plant Solution for Aggregating Photovoltaic Systems and Other Distributed Energy Resources for Northern European Primary Frequency Reserves," Energies, MDPI, vol. 14(5), pages 1-23, February.
    10. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    11. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    12. Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
    13. Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
    14. Kuttner, Leopold, 2022. "Integrated scheduling and bidding of power and reserve of energy resource aggregators with storage plants," Applied Energy, Elsevier, vol. 321(C).
    15. Katarzyna Maciejowska, 2022. "A portfolio management of a small RES utility with a Structural Vector Autoregressive model of German electricity markets," Papers 2205.00975, arXiv.org.
    16. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    17. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    18. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    19. Bhatia, Kushagra & Mittal, Rajat & Varanasi, Jyothi & Tripathi, M.M., 2021. "An ensemble approach for electricity price forecasting in markets with renewable energy resources," Utilities Policy, Elsevier, vol. 70(C).
    20. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.