IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544224040659.html
   My bibliography  Save this article

A novel economy analysis for advancing CO2 capture efficiency of post combustion using sequential quadratic programming (SQP) optimization methodology

Author

Listed:
  • Zhang, Yindi
  • Takyi, Shadrack Adjei
  • Xin, Yue
  • Sheng, ZhengQin
  • Si, Mengting
  • Tontiwachwuthikuld, Paitoon

Abstract

This study presents a novel comprehensive cost analysis model aimed at evaluating the economic viability of post-combustion carbon capture (PCC) processes through the application of sequential quadratic programming (SQP) optimization methodology. A CO2 capture calculation program was developed and coupled with Aspen RateSep by Fortran function for optimization. The SQP approach was employed to systematically explore and optimize various process configurations, ensuring both process and operational constraints were met. By iteratively minimizing the objective function, the optimization led to significant improvements in cost efficiency. Key findings include a 30.91 % reduction in the cost of CO2 avoided (CCA), driven by a 16.03 % decrease in thermal energy demand for regeneration. These enhancements translated into notable reductions in both Capital Expenditure (CAPEX) and Fixed Operational Expenditure (FOPEX), with decreases of 29.13 % and 32.98 %, respectively. The optimization highlighted the critical role of adjusting MEA concentration and other process parameters, resulting in a substantial increase in captured CO2, thereby enhancing overall carbon capture efficiency. Among the process parameters studied, flue gas CO2 concentration exhibited the most significant impact on reducing the cost per ton of CO2 avoided, demonstrating its superior characteristics in optimizing both the efficiency and economic viability of the carbon capture process. This research demonstrates the importance of optimizing PCC processes not only for cost reduction but also for improving environmental sustainability.

Suggested Citation

  • Zhang, Yindi & Takyi, Shadrack Adjei & Xin, Yue & Sheng, ZhengQin & Si, Mengting & Tontiwachwuthikuld, Paitoon, 2025. "A novel economy analysis for advancing CO2 capture efficiency of post combustion using sequential quadratic programming (SQP) optimization methodology," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544224040659
    DOI: 10.1016/j.energy.2024.134287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Finkenrath, 2011. "Cost and Performance of Carbon Dioxide Capture from Power Generation," IEA Energy Papers 2011/5, OECD Publishing.
    2. Bai, Hsunling & Wei, Jong-Hourm, 1996. "The CO2 mitigation options for the electric sector. A case study of Taiwan," Energy Policy, Elsevier, vol. 24(3), pages 221-228, March.
    3. Muis, Z.A. & Hashim, H. & Manan, Z.A. & Taha, F.M. & Douglas, P.L., 2010. "Optimal planning of renewable energy-integrated electricity generation schemes with CO2 reduction target," Renewable Energy, Elsevier, vol. 35(11), pages 2562-2570.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    2. Huang, Yuping & Zheng, Qipeng P. & Fan, Neng & Aminian, Kashy, 2014. "Optimal scheduling for enhanced coal bed methane production through CO2 injection," Applied Energy, Elsevier, vol. 113(C), pages 1475-1483.
    3. Adeel Arif & Muhammad Rizwan & Ali Elkamel & Luqman Hakeem & Muhammad Zaman, 2020. "Optimal Selection of Integrated Electricity Generation Systems for the Power Sector with Low Greenhouse Gas (GHG) Emissions," Energies, MDPI, vol. 13(17), pages 1-37, September.
    4. Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
    5. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    6. Philippe Thalmann & Marc Vielle, 2019. "Lowering CO2 emissions in the Swiss transport sector," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    7. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    8. Marie Renner, 2014. "Carbon prices and CCS investment: comparative study between the European Union and China," Working Papers 1402, Chaire Economie du climat.
    9. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    10. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    11. Wang, B. & Liu, L. & Huang, G.H. & Li, W. & Xie, Y.L., 2018. "Effects of carbon and environmental tax on power mix planning - A case study of Hebei Province, China," Energy, Elsevier, vol. 143(C), pages 645-657.
    12. Wu Haibo & Liu Zhaohui, 2018. "Economic research relating to a 200 MWe oxy‐fuel combustion power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 911-919, October.
    13. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    14. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
    15. Purwanto, Widodo Wahyu & Pratama, Yoga Wienda & Nugroho, Yulianto Sulistyo & Warjito, & Hertono, Gatot Fatwanto & Hartono, Djoni & Deendarlianto, & Tezuka, Tetsuo, 2015. "Multi-objective optimization model for sustainable Indonesian electricity system: Analysis of economic, environment, and adequacy of energy sources," Renewable Energy, Elsevier, vol. 81(C), pages 308-318.
    16. Scaccabarozzi, Roberto & Gatti, Manuele & Martelli, Emanuele, 2016. "Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle," Applied Energy, Elsevier, vol. 178(C), pages 505-526.
    17. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    18. Babonneau, Frédéric & Thalmann, Philippe & Vielle, Marc, 2015. "Defining deep decarbonization pathways for Switzerland: An economic evaluation based on the Computable General Equilibrium Model GEMINI-E3," Conference papers 332637, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    20. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544224040659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.