IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i11p2562-2570.html
   My bibliography  Save this article

Optimal planning of renewable energy-integrated electricity generation schemes with CO2 reduction target

Author

Listed:
  • Muis, Z.A.
  • Hashim, H.
  • Manan, Z.A.
  • Taha, F.M.
  • Douglas, P.L.

Abstract

This paper presents a Mixed Integer Linear Programming (MILP) model that was developed for the optimal planning of electricity generation schemes for a nation to meet a specified CO2 emission target. The model was developed and implemented in General Algebraic Modeling System (GAMS) for the fleet of electricity generation in Peninsular Malaysia. In order to reduce the CO2 emissions by 50% from current CO2 emission level, the optimizer selected a scheme which includes Integrated Gasification Combined Cycle (IGCC), Natural Gas Combined Cycle (NGCC), nuclear and biomass from landfill gas and palm oil residues. It was predicted that Malaysia has potential to generate up to nine percent of electricity from renewable energy (RE) based on the available sources of RE in Malaysia.

Suggested Citation

  • Muis, Z.A. & Hashim, H. & Manan, Z.A. & Taha, F.M. & Douglas, P.L., 2010. "Optimal planning of renewable energy-integrated electricity generation schemes with CO2 reduction target," Renewable Energy, Elsevier, vol. 35(11), pages 2562-2570.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:11:p:2562-2570
    DOI: 10.1016/j.renene.2010.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110001497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sumathi, S. & Chai, S.P. & Mohamed, A.R., 2008. "Utilization of oil palm as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2404-2421, December.
    2. Urmee, Tania & Harries, David & Schlapfer, August, 2009. "Issues related to rural electrification using renewable energy in developing countries of Asia and Pacific," Renewable Energy, Elsevier, vol. 34(2), pages 354-357.
    3. Bai, Hsunling & Wei, Jong-Hourm, 1996. "The CO2 mitigation options for the electric sector. A case study of Taiwan," Energy Policy, Elsevier, vol. 24(3), pages 221-228, March.
    4. Linares, Pedro & Romero, Carlos, 2002. "Aggregation of preferences in an environmental economics context: a goal-programming approach," Omega, Elsevier, vol. 30(2), pages 89-95, April.
    5. Jafar, Abdul Hamid & Al-Amin, Abul Quasem & Siwar, Chamhuri, 2008. "Environmental impact of alternative fuel mix in electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 33(10), pages 2229-2235.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    2. Habib Hussain Khan & Nahla Samargandi & Adeel Ahmed, 2021. "Economic development, energy consumption, and climate change: An empirical account from Malaysia," Natural Resources Forum, Blackwell Publishing, vol. 45(4), pages 397-423, November.
    3. Mekhilef, S. & Saidur, R. & Safari, A. & Mustaffa, W.E.S.B., 2011. "Biomass energy in Malaysia: Current state and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3360-3370, September.
    4. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H., 2011. "A review on energy scenario and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 639-647, January.
    5. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    6. Oyedepo, Sunday Olayinka, 2014. "Towards achieving energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 255-272.
    7. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    8. Ahlborg, Helene & Hammar, Linus, 2014. "Drivers and barriers to rural electrification in Tanzania and Mozambique – Grid-extension, off-grid, and renewable energy technologies," Renewable Energy, Elsevier, vol. 61(C), pages 117-124.
    9. Fortier, Marie-Odile P. & Teron, Lemir & Reames, Tony G. & Munardy, Dynta Trishana & Sullivan, Breck M., 2019. "Introduction to evaluating energy justice across the life cycle: A social life cycle assessment approach," Applied Energy, Elsevier, vol. 236(C), pages 211-219.
    10. Xia, Wanjun & Murshed, Muntasir & Khan, Zeeshan & Chen, Zhenling & Ferraz, Diogo, 2022. "Exploring the nexus between fiscal decentralization and energy poverty for China: Does country risk matter for energy poverty reduction?," Energy, Elsevier, vol. 255(C).
    11. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
    12. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    13. J González-Pachón & C Romero, 2006. "An analytical framework for aggregating multiattribute utility functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1241-1247, October.
    14. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    15. Ahmed, Shamsuddin & Islam, Md Tasbirul & Karim, Mohd Aminul & Karim, Nissar Mohammad, 2014. "Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh," Renewable Energy, Elsevier, vol. 72(C), pages 223-235.
    16. Jacinto González-Pachón & Carlos Romero, 2007. "Inferring consensus weights from pairwise comparison matrices without suitable properties," Annals of Operations Research, Springer, vol. 154(1), pages 123-132, October.
    17. Iyabo Adeola Olanrele & Adedoyin I. Lawal & Ezekiel Oseni & Ahmed Oluwatobi Adekunle & Bukola, B. Lawal-Adedoyin & Crystal O. Elleke & Racheal Ojeka-John & Henry Nweke-Love, 2020. "Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 469-478.
    18. Ishola, Mofoluwake M. & Brandberg, Tomas & Sanni, Sikiru A. & Taherzadeh, Mohammad J., 2013. "Biofuels in Nigeria: A critical and strategic evaluation," Renewable Energy, Elsevier, vol. 55(C), pages 554-560.
    19. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    20. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:11:p:2562-2570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.