IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224011770.html
   My bibliography  Save this article

Comprehensive investigation of the electro-thermal performance and heat transfer mechanism of battery system under forced flow immersion cooling

Author

Listed:
  • Liu, Qian
  • Liu, Yingying
  • Zhang, Mingjie
  • Wang, Shuping
  • Li, Wenlong
  • Zhu, Xiaoqing
  • Ju, Xing
  • Xu, Chao
  • Wei, Bin

Abstract

Efficient cooling during rapid battery charging/discharging necessitates forced circulating flow in immersion cooling systems. However, under forced flow immersion cooling (FFIC), the comprehensive impact on the electrical and thermal performance of battery modules remains inadequately explored. This study constructs an immersion-cooled battery module test platform for experimental research on the evolution of electrical and thermal characteristics. The results show that under FFIC, when the depth of discharge (DOD) during 2C and 3C discharges is below 85 %, the voltage deviation of module (δU,t) remains stable within 1 % and 2 %, respectively. At DOD of 100 %, the maximum δU,t for 2C and 3C are 10 % and 24.5 %, respectively. Furthermore, the analysis of Pearson correlation coefficient under FFIC reveals that the δU,t exhibits a very strong positive correlation with temperature difference of battery module and cell, with correlation coefficients of +0.94 and + 0.87, respectively. Higher flow rates accelerate the recovery of module temperature and facilitate voltage distribution equalization after discharge. Additionally, to elucidate the influence of flow rate on FFIC, module-scale heat transfer characteristics during battery discharge are theoretically analyzed, establishing a fitting relationship between C-rates, flow rates, and the Nusselt number (Nu). This study provides a comprehensive understanding of integrated electro-thermal performance and external heat transfer capability for flow regulation in immersion cooling.

Suggested Citation

  • Liu, Qian & Liu, Yingying & Zhang, Mingjie & Wang, Shuping & Li, Wenlong & Zhu, Xiaoqing & Ju, Xing & Xu, Chao & Wei, Bin, 2024. "Comprehensive investigation of the electro-thermal performance and heat transfer mechanism of battery system under forced flow immersion cooling," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011770
    DOI: 10.1016/j.energy.2024.131404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.