IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006728.html
   My bibliography  Save this article

Prediction of nonlinear degradation knee-point and remaining useful life for lithium-ion batteries using relaxation voltage

Author

Listed:
  • Fan, Wenjun
  • Zhu, Jiangong
  • Qiao, Dongdong
  • Jiang, Bo
  • Wang, Xueyuan
  • Wei, Xuezhe
  • Dai, Haifeng

Abstract

Lithium-ion batteries behave nonlinear degradation during long-term usage. Prediction of the nonlinear degradation is of guiding significance in taking proactive measures to prolong battery life and ensure battery safety. In this study, a new nonlinear degradation knee-point prediction method is proposed utilizing relaxation voltage as the feature sequence, and it is the first attempt with the joint prediction of the knee-point and remaining useful life. A remaining useful life prediction framework integrating degradation features of the knee-point is established, which leads to stable improvements in the accuracy of remaining useful life prediction. Through transfer learning, the proposed joint prediction method is validated on different battery datasets, obtaining mean absolute errors within 26 cycles for the knee-point and remaining useful life prediction, with root mean square errors below 28 cycles. The predicted results can serve as evaluation indicators for various application scenarios, including battery design, ability evaluation, and functionality enhancement.

Suggested Citation

  • Fan, Wenjun & Zhu, Jiangong & Qiao, Dongdong & Jiang, Bo & Wang, Xueyuan & Wei, Xuezhe & Dai, Haifeng, 2024. "Prediction of nonlinear degradation knee-point and remaining useful life for lithium-ion batteries using relaxation voltage," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006728
    DOI: 10.1016/j.energy.2024.130900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.