Online identification of knee point in conventional and accelerated aging lithium-ion batteries using linear regression and Bayesian inference methods
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2025.125646
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jinyue Yan & Ying Yang & Pietro Elia Campana & Jijiang He, 2019. "City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China," Nature Energy, Nature, vol. 4(8), pages 709-717, August.
- Fan, Wenjun & Zhu, Jiangong & Qiao, Dongdong & Jiang, Bo & Wang, Xueyuan & Wei, Xuezhe & Dai, Haifeng, 2024. "Prediction of nonlinear degradation knee-point and remaining useful life for lithium-ion batteries using relaxation voltage," Energy, Elsevier, vol. 294(C).
- Zhang, Caiping & Wang, Yubin & Gao, Yang & Wang, Fang & Mu, Biqiang & Zhang, Weige, 2019. "Accelerated fading recognition for lithium-ion batteries with Nickel-Cobalt-Manganese cathode using quantile regression method," Applied Energy, Elsevier, vol. 256(C).
- Weiping Diao & Saurabh Saxena & Bongtae Han & Michael Pecht, 2019. "Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells," Energies, MDPI, vol. 12(15), pages 1-9, July.
- Ma, Yan & Li, Jiaqi & Gao, Jinwu & Chen, Hong, 2024. "State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature," Energy, Elsevier, vol. 295(C).
- Ni, Yulong & Xu, Jianing & Zhu, Chunbo & Pei, Lei, 2022. "Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model," Applied Energy, Elsevier, vol. 305(C).
- Ni, Yulong & Song, Kai & Pei, Lei & Li, Xiaoyu & Wang, Tiansi & Zhang, He & Zhu, Chunbo & Xu, Jianing, 2025. "State-of-health estimation and knee point identification of lithium-ion battery based on data-driven and mechanism model," Applied Energy, Elsevier, vol. 385(C).
- Zhang, Jianping & Zhang, Yinjie & Fu, Jian & Zhao, Dawen & Liu, Ping & Zhang, Zhiwei, 2024. "Capacity fading knee-point recognition method and life prediction for lithium-ion batteries using segmented capacity degradation model," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
- Lv, Haichao & Kang, Lixia & Liu, Yongzhong, 2023. "Analysis of strategies to maximize the cycle life of lithium-ion batteries based on aging trajectory prediction," Energy, Elsevier, vol. 275(C).
- Ouyang, Minggao & Feng, Xuning & Han, Xuebing & Lu, Languang & Li, Zhe & He, Xiangming, 2016. "A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery," Applied Energy, Elsevier, vol. 165(C), pages 48-59.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ni, Yulong & Song, Kai & Pei, Lei & Li, Xiaoyu & Wang, Tiansi & Zhang, He & Zhu, Chunbo & Xu, Jianing, 2025. "State-of-health estimation and knee point identification of lithium-ion battery based on data-driven and mechanism model," Applied Energy, Elsevier, vol. 385(C).
- Wang, Cong & Chen, Yunxia, 2024. "Unsupervised dynamic prognostics for abnormal degradation of lithium-ion battery," Applied Energy, Elsevier, vol. 365(C).
- Zhang, Jianping & Zhang, Yinjie & Fu, Jian & Zhao, Dawen & Liu, Ping & Zhang, Zhiwei, 2024. "Capacity fading knee-point recognition method and life prediction for lithium-ion batteries using segmented capacity degradation model," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Huang, Zhelin & Ma, Zhihua, 2024. "Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
- Liu, Zhi-Feng & Huang, Ya-He & Zhang, Shu-Rui & Luo, Xing-Fu & Chen, Xiao-Rui & Lin, Jun-Jie & Tang, Yu & Guo, Liang & Li, Ji-Xiang, 2025. "A collaborative interaction gate-based deep learning model with optimal bandwidth adjustment strategies for lithium-ion battery capacity point-interval forecasting," Applied Energy, Elsevier, vol. 377(PD).
- Gomez, William & Wang, Fu-Kwun & Chou, Jia-Hong, 2024. "Li-ion battery capacity prediction using improved temporal fusion transformer model," Energy, Elsevier, vol. 296(C).
- Ospina Agudelo, Brian & Zamboni, Walter & Postiglione, Fabio & Monmasson, Eric, 2023. "Battery State-of-Health estimation based on multiple charge and discharge features," Energy, Elsevier, vol. 263(PA).
- Xue, Qiao & Li, Junqiu & Xu, Peipei, 2022. "Machine learning based swift online capacity prediction of lithium-ion battery through whole cycle life," Energy, Elsevier, vol. 261(PA).
- Calum Strange & Shawn Li & Richard Gilchrist & Gonçalo dos Reis, 2021. "Elbows of Internal Resistance Rise Curves in Li-Ion Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Zhao, Guangcai & Kang, Yongzhe & Huang, Peng & Duan, Bin & Zhang, Chenghui, 2023. "Battery health prognostic using efficient and robust aging trajectory matching with ensemble deep transfer learning," Energy, Elsevier, vol. 282(C).
- Du, Jingcai & Zhang, Caiping & Li, Shuowei & Zhang, Linjing & Zhang, Weige, 2024. "Aging abnormality detection of lithium-ion batteries combining feature engineering and deep learning," Energy, Elsevier, vol. 297(C).
- Tang, Aihua & Xu, Yuchen & Tian, Jinpeng & Zou, Hang & Liu, Kailong & Yu, Quanqing, 2025. "Adaptive engineering-assisted deep learning for battery module health monitoring across dynamic operations," Energy, Elsevier, vol. 322(C).
- Xing, W.W. & Zhang, Z. & Shah, A.A., 2025. "Enhanced Gaussian process dynamical modeling for battery health status forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
- Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
- Lv, Haichao & Kang, Lixia & Liu, Yongzhong, 2023. "Analysis of strategies to maximize the cycle life of lithium-ion batteries based on aging trajectory prediction," Energy, Elsevier, vol. 275(C).
- Ni, Yulong & Xu, Jianing & Zhu, Chunbo & Pei, Lei, 2022. "Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model," Applied Energy, Elsevier, vol. 305(C).
- Wei, Meng & Ye, Min & Zhang, Chuanwei & Wang, Qiao & Lian, Gaoqi & Xia, Baozhou, 2024. "Integrating mechanism and machine learning based capacity estimation for LiFePO4 batteries under slight overcharge cycling," Energy, Elsevier, vol. 296(C).
- Sohn, Suyeon & Byun, Ha-Eun & Lee, Jay H., 2022. "Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation," Applied Energy, Elsevier, vol. 328(C).
- Lee, Jaewook & Lee, Jay H., 2024. "Simultaneous extraction of intra- and inter-cycle features for predicting lithium-ion battery's knees using convolutional and recurrent neural networks," Applied Energy, Elsevier, vol. 356(C).
More about this item
Keywords
Lithium-ion batteries; Conventional aging; Accelerated aging; Knee point; Linear regression; Bayesian inference method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003769. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.