IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224008867.html
   My bibliography  Save this article

Li-ion battery capacity prediction using improved temporal fusion transformer model

Author

Listed:
  • Gomez, William
  • Wang, Fu-Kwun
  • Chou, Jia-Hong

Abstract

Lithium-ion (Li-ion) batteries have near-zero energy emissions and provide power to various devices, such as automobiles and portable equipment. The strategy predicts the capacity of Li-ion in advance and can also help arrange maintenance tasks. To improve state of health (SOH) and remaining useful life (RUL) prediction accuracy, we propose an improved temporal fusion transformer (ITFT) method based on bidirectional long short-term memory (Bi-LSTM) encoder-decoder layer replacing the long short-term memory for probabilistic online RUL prediction. A novel interpretable hyperparameter tuning method called Bayesian optimization based on tree-structure Parzen estimator (TPE) is coupled with a unique ITFT model to improve RUL prediction accuracy. Furthermore, we consider the effects of keen-onset to establish the starting point of our training. The root mean square error for four batteries using the proposed model for the test data are 0.0018, 0.0019, 0.0013, and 0.0025, respectively, which outperforms the other models, with an improvement accuracy rate above 25%. The proposed model SOH results indicate that our proposed approach outperforms some previously published methods. Our online RUL prediction demonstrates relative errors of 1.18%, 1.54%, 1.06%, 2.70%, 0.67%, 2%, 3.90%, 0%, and 3.08% for nine batteries, respectively. These results for SOH and RUL predictions emphasize the excellent performance of our proposed method.

Suggested Citation

  • Gomez, William & Wang, Fu-Kwun & Chou, Jia-Hong, 2024. "Li-ion battery capacity prediction using improved temporal fusion transformer model," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008867
    DOI: 10.1016/j.energy.2024.131114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    2. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    3. Weiping Diao & Saurabh Saxena & Bongtae Han & Michael Pecht, 2019. "Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells," Energies, MDPI, vol. 12(15), pages 1-9, July.
    4. Lin, Mingqiang & Wu, Jian & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "State of health estimation with attentional long short-term memory network for lithium-ion batteries," Energy, Elsevier, vol. 268(C).
    5. Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
    6. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    7. Calum Strange & Shawn Li & Richard Gilchrist & Gonçalo dos Reis, 2021. "Elbows of Internal Resistance Rise Curves in Li-Ion Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
    8. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    9. Chen, Liping & Xie, Siqiang & Lopes, António M. & Li, Huafeng & Bao, Xinyuan & Zhang, Chaolong & Li, Penghua, 2024. "A new SOH estimation method for Lithium-ion batteries based on model-data-fusion," Energy, Elsevier, vol. 286(C).
    10. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Shang, Zuogang & Yan, Ruqiang & Chen, Xuefeng, 2023. "Explainability-driven model improvement for SOH estimation of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Jing & Fan, Chaoqun & Yan, Huiyi, 2024. "SOH estimation of lithium-ion batteries based on multi-feature deep fusion and XGBoost," Energy, Elsevier, vol. 306(C).
    2. John Guirguis & Ryan Ahmed, 2024. "Transformer-Based Deep Learning Models for State of Charge and State of Health Estimation of Li-Ion Batteries: A Survey Study," Energies, MDPI, vol. 17(14), pages 1-13, July.
    3. Liu, Zhi-Feng & Huang, Ya-He & Zhang, Shu-Rui & Luo, Xing-Fu & Chen, Xiao-Rui & Lin, Jun-Jie & Tang, Yu & Guo, Liang & Li, Ji-Xiang, 2025. "A collaborative interaction gate-based deep learning model with optimal bandwidth adjustment strategies for lithium-ion battery capacity point-interval forecasting," Applied Energy, Elsevier, vol. 377(PD).
    4. Wang, Zhenxi & Ma, Yan & Gao, Jinwu & Chen, Hong, 2025. "Remaining useful life prediction for solid-state lithium batteries based on spatial–temporal relations and neuronal ODE-assisted KAN," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    5. Zhao, Wanjie & Ding, Wei & Zhang, Shujing & Zhang, Zhen, 2024. "Enhancing lithium-ion battery lifespan early prediction using a multi-branch vision transformer model," Energy, Elsevier, vol. 302(C).
    6. Xiangbin Xia & Shijun Li & Derong Luo & Sen Chen & Jing Liu & Jiacheng Yao & Liren Wu & Ximing Zhang, 2024. "Electric-Thermal Analysis of Power Supply Module in Graphitization Furnace," Energies, MDPI, vol. 17(17), pages 1-22, August.
    7. Chen, Zhen & Wang, Zirong & Wu, Wei & Xia, Tangbin & Pan, Ershun, 2024. "A hybrid battery degradation model combining arrhenius equation and neural network for capacity prediction under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    8. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    9. Chen, Bingyang & Wang, Kai & Xu, Degang & Xia, Juan & Fan, Lulu & Zhou, Jiehan, 2024. "Global–local attention network and value-informed federated strategy for predicting power battery state of health," Energy, Elsevier, vol. 313(C).
    10. Sun, Shukai & Che, Liang & Zhao, Ruifeng & Chen, Yizhe & Li, Ming, 2025. "Multi-task learning and voltage reconstruction-based battery degradation prediction under variable operating conditions of energy storage applications," Energy, Elsevier, vol. 317(C).
    11. Xiao, Xiao & Zhang, Xuan & Song, Meiqi & Liu, Xiaojing & Huang, Qingyu, 2024. "NPP accident prevention: Integrated neural network for coupled multivariate time series prediction based on PSO and its application under uncertainty analysis for NPP data," Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    2. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    3. Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
    4. Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
    5. Wei, Meng & Ye, Min & Zhang, Chuanwei & Li, Yan & Zhang, Jiale & Wang, Qiao, 2023. "A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling," Energy, Elsevier, vol. 283(C).
    6. Liu, Chenghao & Deng, Zhongwei & Zhang, Xiaohong & Bao, Huanhuan & Cheng, Duanqian, 2024. "Battery state of health estimation across electrochemistry and working conditions based on domain adaptation," Energy, Elsevier, vol. 297(C).
    7. Liu, Donglei & Wang, Shunli & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2024. "An optimized multi-segment long short-term memory network strategy for power lithium-ion battery state of charge estimation adaptive wide temperatures," Energy, Elsevier, vol. 304(C).
    8. Sun, Jing & Wang, Haitao, 2025. "State of health estimation for lithium-ion batteries based on optimal feature subset algorithm," Energy, Elsevier, vol. 322(C).
    9. Ibraheem, Rasheed & Wu, Yue & Lyons, Terry & dos Reis, Gonçalo, 2023. "Early prediction of Lithium-ion cell degradation trajectories using signatures of voltage curves up to 4-minute sub-sampling rates," Applied Energy, Elsevier, vol. 352(C).
    10. Zhang, Zhen & Wang, Yanyu & Ruan, Xingxin & Zhang, Xiangyu, 2025. "Lithium-ion batteries lifetime early prediction using domain adversarial learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    11. Ni, Yulong & Li, Xiaoyu & Zhang, He & Wang, Tiansi & Song, Kai & Zhu, Chunbo & Xu, Jianing, 2025. "Online identification of knee point in conventional and accelerated aging lithium-ion batteries using linear regression and Bayesian inference methods," Applied Energy, Elsevier, vol. 388(C).
    12. Lv, Haichao & Kang, Lixia & Liu, Yongzhong, 2023. "Analysis of strategies to maximize the cycle life of lithium-ion batteries based on aging trajectory prediction," Energy, Elsevier, vol. 275(C).
    13. Ni, Yulong & Song, Kai & Pei, Lei & Li, Xiaoyu & Wang, Tiansi & Zhang, He & Zhu, Chunbo & Xu, Jianing, 2025. "State-of-health estimation and knee point identification of lithium-ion battery based on data-driven and mechanism model," Applied Energy, Elsevier, vol. 385(C).
    14. Li, Ziyang & Zhang, Xiangwen & Gao, Wei, 2024. "State of health estimation of lithium-ion battery during fast charging process based on BiLSTM-Transformer," Energy, Elsevier, vol. 311(C).
    15. Lin, Chunsong & Tuo, Xianguo & Wu, Longxing & Zhang, Guiyu & Lyu, Zhiqiang & Zeng, Xiangling, 2025. "Physics-informed machine learning for accurate SOH estimation of lithium-ion batteries considering various temperatures and operating conditions," Energy, Elsevier, vol. 318(C).
    16. Fujin Wang & Zhi Zhai & Zhibin Zhao & Yi Di & Xuefeng Chen, 2024. "Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Wang, Cong & Chen, Yunxia, 2024. "Unsupervised dynamic prognostics for abnormal degradation of lithium-ion battery," Applied Energy, Elsevier, vol. 365(C).
    18. Wei, Meng & Ye, Min & Zhang, Chuanwei & Wang, Qiao & Lian, Gaoqi & Xia, Baozhou, 2024. "Integrating mechanism and machine learning based capacity estimation for LiFePO4 batteries under slight overcharge cycling," Energy, Elsevier, vol. 296(C).
    19. Peter M. Attia & Eric Moch & Patrick K. Herring, 2025. "Challenges and opportunities for high-quality battery production at scale," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2024. "An adaptive and interpretable SOH estimation method for lithium-ion batteries based-on relaxation voltage cross-scale features and multi-LSTM-RFR2," Energy, Elsevier, vol. 304(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.