Global–local attention network and value-informed federated strategy for predicting power battery state of health
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.134088
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Li, Wei & Li, Yongsheng & Garg, Akhil & Gao, Liang, 2024. "Enhancing real-time degradation prediction of lithium-ion battery: A digital twin framework with CNN-LSTM-attention model," Energy, Elsevier, vol. 286(C).
- Feng, Juqiang & Cai, Feng & Zhao, Yang & Zhang, Xing & Zhan, Xinju & Wang, Shunli, 2024. "A novel feature optimization and ensemble learning method for state-of-health prediction of mining lithium-ion batteries," Energy, Elsevier, vol. 299(C).
- Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Gomez, William & Wang, Fu-Kwun & Chou, Jia-Hong, 2024. "Li-ion battery capacity prediction using improved temporal fusion transformer model," Energy, Elsevier, vol. 296(C).
- Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
- Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
- Song, Yuchen & Liu, Datong & Liao, Haitao & Peng, Yu, 2020. "A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 261(C).
- Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
- Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
- Che, Yunhong & Zheng, Yusheng & Forest, Florent Evariste & Sui, Xin & Hu, Xiaosong & Teodorescu, Remus, 2024. "Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
- Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
- Zhao, Jingyuan & Wang, Zhenghong & Wu, Yuyan & Burke, Andrew F., 2025. "Predictive pretrained transformer (PPT) for real-time battery health diagnostics," Applied Energy, Elsevier, vol. 377(PD).
- Hong, Jichao & Zhang, Huaqin & Zhang, Xinyang & Yang, Haixu & Chen, Yingjie & Wang, Facheng & Huang, Zhongguo & Wang, Wei, 2024. "Online accurate voltage prediction with sparse data for the whole life cycle of Lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 369(C).
- Liu, Zhi-Feng & Huang, Ya-He & Zhang, Shu-Rui & Luo, Xing-Fu & Chen, Xiao-Rui & Lin, Jun-Jie & Tang, Yu & Guo, Liang & Li, Ji-Xiang, 2025. "A collaborative interaction gate-based deep learning model with optimal bandwidth adjustment strategies for lithium-ion battery capacity point-interval forecasting," Applied Energy, Elsevier, vol. 377(PD).
- Mei, Peng & Karimi, Hamid Reza & Xie, Jiale & Chen, Fei & Ou, Lei & Yang, Shichun & Huang, Cong, 2024. "Battery state estimation methods and management system under vehicle–cloud collaboration: A Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
- Chen, Zhen & Wang, Zirong & Wu, Wei & Xia, Tangbin & Pan, Ershun, 2024. "A hybrid battery degradation model combining arrhenius equation and neural network for capacity prediction under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Sun, Jing & Wang, Haitao, 2025. "State of health estimation for lithium-ion batteries based on optimal feature subset algorithm," Energy, Elsevier, vol. 322(C).
- Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Ma, Yan & Shan, Ce & Gao, Jinwu & Chen, Hong, 2022. "A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction," Energy, Elsevier, vol. 251(C).
- Kumar, Roushan & Das, Kaushik & Krishna, Anurup, 2024. "Comparative analysis of data-driven electric vehicle battery health models across different operating conditions," Energy, Elsevier, vol. 309(C).
- Li, Feifan & Yu, Yongguang & Yuan, Xiaolin & Ren, Guojian, 2025. "State-of-health estimation for lithium-ion batteries using unsupervised deep subdomain adaptation," Energy, Elsevier, vol. 324(C).
- Chen, Shouxuan & Zhang, Shuting & Geng, Yuanfei & Jia, Yao & Zhang, Shuzhi, 2025. "Dynamic conditions-oriented model-data fused framework enabling state of charge and capacity accurate co-estimation of lithium-ion battery," Energy, Elsevier, vol. 317(C).
- Liu, Ruixue & Jiang, Benben, 2025. "A multi-time-resolution attention-based interaction network for co-estimation of multiple battery states," Applied Energy, Elsevier, vol. 381(C).
- Li, Yang & Wang, Shunli & Chen, Lei & Qi, Chuangshi & Fernandez, Carlos, 2023. "Multiple layer kernel extreme learning machine modeling and eugenics genetic sparrow search algorithm for the state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 282(C).
- Zhang, Heng & Chen, Wei & Miao, Qiang, 2025. "Adaptive diagnosis and prognosis for Lithium-ion batteries via Lebesgue time model with multiple hidden state variables," Applied Energy, Elsevier, vol. 392(C).
- Wang, Tong & Wu, Yan & Zhu, Keming & Cen, Jianmeng & Wang, Shaohong & Huang, Yuqi, 2025. "Deep learning and polarization equilibrium based state of health estimation for lithium-ion battery using partial charging data," Energy, Elsevier, vol. 317(C).
- Chen, Bingyang & Zeng, Xingjie & Liu, Chao & Xu, Yafei & Cao, Heling, 2025. "Health management of power batteries in low temperatures based on Adaptive Transfer Enformer framework," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
- Li, Ziyang & Zhang, Xiangwen & Gao, Wei, 2024. "State of health estimation of lithium-ion battery during fast charging process based on BiLSTM-Transformer," Energy, Elsevier, vol. 311(C).
- Zhang, Wencan & Ouyang, Nan & Yin, Xiuxing & Li, Xingyao & Wu, Weixiong & Huang, Liansheng, 2022. "Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge," Applied Energy, Elsevier, vol. 323(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038660. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.