IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics036054422501504x.html
   My bibliography  Save this article

State-of-health estimation for lithium-ion batteries using unsupervised deep subdomain adaptation

Author

Listed:
  • Li, Feifan
  • Yu, Yongguang
  • Yuan, Xiaolin
  • Ren, Guojian

Abstract

In battery management systems (BMS), it is always a challenge to perform cross-domain state of health (SOH) estimation among different lithium-ion batteries (LIBs). To address this problem, this paper proposes an unsupervised transfer learning framework based on subdomain adaptation aiming at accurate SOH prediction. Specifically, a deep subdomain transfer network (DSTN) is constructed by integrating a convolutional neural network (CNN) with a long-short-term memory (LSTM) network and incorporating a multi-head attention mechanism (MHA) in order to deeply mine and merge multi-source feature information. This mechanism effectively enhances the ability of the model to capture key information from the complex feature space, and relies on the unsupervised learning to extract effective features for SOH prediction. For the case that the labeled data belongs to the continuous domain, the local maximum mean difference (LMMD) is employed to reduce the distributional difference between the source and target domain battery data by using the subdomain adaptive theory to achieve the leap from the classification task to the regression task. In the experimental part, the significant advantages of LMMD in measuring inter-domain differences are highlighted by systematically comparing LMMD with the traditional maximum mean difference (MMD) method. In addition, a comparative experiment is carried out between adding and not adding a multi-head attention layer in the network. It not only verifies the accuracy and efficiency of DSTN in transfer learning tasks, but also highlights the key role of multiple attention mechanism in enhancing transfer learning tasks. Furthermore, through comparison with supervised learning scenarios, it has been confirmed that the unsupervised LMMD method can demonstrate excellent performance even in practical applications where sufficient labeled data are lacking. This highlights its broad applicability and practicality. The experimental results show that the unsupervised transfer learning method based on lmmd in this paper can improve the accuracy of transfer learning and has wide popularization significance.

Suggested Citation

  • Li, Feifan & Yu, Yongguang & Yuan, Xiaolin & Ren, Guojian, 2025. "State-of-health estimation for lithium-ion batteries using unsupervised deep subdomain adaptation," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s036054422501504x
    DOI: 10.1016/j.energy.2025.135862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422501504X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
    2. Oyewole, Isaiah & Chehade, Abdallah & Kim, Youngki, 2022. "A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation," Applied Energy, Elsevier, vol. 312(C).
    3. Pan, Haihong & Lü, Zhiqiang & Wang, Huimin & Wei, Haiyan & Chen, Lin, 2018. "Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine," Energy, Elsevier, vol. 160(C), pages 466-477.
    4. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    5. Peter M. Attia & Aditya Grover & Norman Jin & Kristen A. Severson & Todor M. Markov & Yang-Hung Liao & Michael H. Chen & Bryan Cheong & Nicholas Perkins & Zi Yang & Patrick K. Herring & Muratahan Ayko, 2020. "Closed-loop optimization of fast-charging protocols for batteries with machine learning," Nature, Nature, vol. 578(7795), pages 397-402, February.
    6. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jingyuan & Wang, Zhenghong & Wu, Yuyan & Burke, Andrew F., 2025. "Predictive pretrained transformer (PPT) for real-time battery health diagnostics," Applied Energy, Elsevier, vol. 377(PD).
    2. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Zhang, Zhen & Wang, Yanyu & Ruan, Xingxin & Zhang, Xiangyu, 2025. "Lithium-ion batteries lifetime early prediction using domain adversarial learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    4. Jiang, Lidang & Hu, Changyan & Ji, Sibei & Zhao, Hang & Chen, Junxiong & He, Ge, 2025. "Generating comprehensive lithium battery charging data with generative AI," Applied Energy, Elsevier, vol. 377(PC).
    5. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    6. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Tang, Telu & Yang, Xiangguo & Li, Muheng & Li, Xin & Huang, Hai & Guan, Cong & Huang, Jiangfan & Wang, Yufan & Zhou, Chaobin, 2025. "Deep learning model-based real-time state-of-health estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 317(C).
    9. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
    10. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    11. Hong, Jichao & Zhang, Huaqin & Zhang, Xinyang & Yang, Haixu & Chen, Yingjie & Wang, Facheng & Huang, Zhongguo & Wang, Wei, 2024. "Online accurate voltage prediction with sparse data for the whole life cycle of Lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 369(C).
    12. Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
    13. Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
    14. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Li, Tingkai & Liu, Jinqiang & Thelen, Adam & Mishra, Ankush Kumar & Yang, Xiao-Guang & Wang, Zhaoyu & Hu, Chao, 2025. "Coupling a capacity fade model with machine learning for early prediction of the battery capacity trajectory," Applied Energy, Elsevier, vol. 389(C).
    17. Liu, Donglei & Wang, Shunli & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2024. "An optimized multi-segment long short-term memory network strategy for power lithium-ion battery state of charge estimation adaptive wide temperatures," Energy, Elsevier, vol. 304(C).
    18. Matthieu Dubarry & David Beck, 2021. "Analysis of Synthetic Voltage vs. Capacity Datasets for Big Data Li-ion Diagnosis and Prognosis," Energies, MDPI, vol. 14(9), pages 1-24, April.
    19. Che, Yunhong & Zheng, Yusheng & Wu, Yue & Sui, Xin & Bharadwaj, Pallavi & Stroe, Daniel-Ioan & Yang, Yalian & Hu, Xiaosong & Teodorescu, Remus, 2022. "Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network," Applied Energy, Elsevier, vol. 323(C).
    20. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s036054422501504x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.