IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225022145.html
   My bibliography  Save this article

A method for estimating the SOH of lithium-ion batteries under complex charging conditions using dilated residual temporal encoding

Author

Listed:
  • Yang, Simin
  • Xie, Hengwei
  • Liu, Shengzhe
  • Fan, Yuqian
  • Tan, Xiaojun

Abstract

In practical applications, various charging protocols and complex operational conditions present significant challenges for accurately estimating the state of health (SOH) of lithium-ion batteries. Currently available methods, which rely on single charging scenarios and manual feature extraction, exhibit limited generalizability and cannot be easily adapted to diverse charging requirements. Therefore, an end-to-end learning framework that integrates multisource data is proposed in this paper. First, a comprehensive dataset is constructed by incorporating negative pulse fast charging conditions, realistic fast charging simulations, and publicly available data, providing the model with a rich array of learning samples and overcoming the limitations associated with single charging scenarios. Second, a deep neural network based on dilated residual temporal encoding is developed. This network effectively extracts multidimensional features of battery degradation through multiscale convolution techniques, addresses the vanishing gradient problem in deep network training via residual gating mechanisms, and accurately captures long- and short-term temporal dependencies through adaptive temporal encoding. Finally, the experimental results demonstrate that the proposed method exhibits stable performance across various scenarios, including negative pulse fast charging and dynamic load conditions; thus, this method provides a reliable solution for the adaptation of battery management systems to diverse charging requirements.

Suggested Citation

  • Yang, Simin & Xie, Hengwei & Liu, Shengzhe & Fan, Yuqian & Tan, Xiaojun, 2025. "A method for estimating the SOH of lithium-ion batteries under complex charging conditions using dilated residual temporal encoding," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022145
    DOI: 10.1016/j.energy.2025.136572
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225022145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ziyang & Zhang, Xiangwen & Gao, Wei, 2024. "State of health estimation of lithium-ion battery during fast charging process based on BiLSTM-Transformer," Energy, Elsevier, vol. 311(C).
    2. Xiong, Xin & Wang, Yujie & Jiang, Cong & Zhang, Xingchen & Xiang, Haoxiang & Chen, Zonghai, 2024. "End-to-end deep learning powered battery state of health estimation considering multi-neighboring incomplete charging data," Energy, Elsevier, vol. 292(C).
    3. Chen, Junxiong & Hu, Yuanjiang & Zhu, Qiao & Rashid, Haroon & Li, Hongkun, 2023. "A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging," Energy, Elsevier, vol. 282(C).
    4. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    5. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    6. Shen, Jiangwei & Ma, Wensai & Shu, Xing & Shen, Shiquan & Chen, Zheng & Liu, Yonggang, 2023. "Accurate state of health estimation for lithium-ion batteries under random charging scenarios," Energy, Elsevier, vol. 279(C).
    7. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    8. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    9. Xu, Huanwei & Wu, Lingfeng & Xiong, Shizhe & Li, Wei & Garg, Akhil & Gao, Liang, 2023. "An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries," Energy, Elsevier, vol. 276(C).
    10. Bockrath, Steffen & Lorentz, Vincent & Pruckner, Marco, 2023. "State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles," Applied Energy, Elsevier, vol. 329(C).
    11. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    12. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    13. Chen, Liping & Xie, Siqiang & Lopes, António M. & Li, Huafeng & Bao, Xinyuan & Zhang, Chaolong & Li, Penghua, 2024. "A new SOH estimation method for Lithium-ion batteries based on model-data-fusion," Energy, Elsevier, vol. 286(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    2. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    3. Giovane Ronei Sylvestrin & Joylan Nunes Maciel & Marcio Luís Munhoz Amorim & João Paulo Carmo & José A. Afonso & Sérgio F. Lopes & Oswaldo Hideo Ando Junior, 2025. "State of the Art in Electric Batteries’ State-of-Health (SoH) Estimation with Machine Learning: A Review," Energies, MDPI, vol. 18(3), pages 1-77, February.
    4. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Tang, Aihua & Kan, Jiarong & Pecht, Michael, 2024. "SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion," Energy, Elsevier, vol. 308(C).
    5. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    6. Zhang, Jiarui & Mao, Lei & Liu, Zhongyong & Yu, Kun & Hu, Zhiyong, 2025. "A Bayesian transfer learning framework for assessing health status of Lithium-ion batteries considering individual battery operating states," Applied Energy, Elsevier, vol. 382(C).
    7. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
    8. Sun, Jing & Wang, Haitao, 2025. "State of health estimation for lithium-ion batteries based on optimal feature subset algorithm," Energy, Elsevier, vol. 322(C).
    9. Zhao, Jingyuan & Wang, Zhenghong & Wu, Yuyan & Burke, Andrew F., 2025. "Predictive pretrained transformer (PPT) for real-time battery health diagnostics," Applied Energy, Elsevier, vol. 377(PD).
    10. Tang, Telu & Yang, Xiangguo & Li, Muheng & Li, Xin & Huang, Hai & Guan, Cong & Huang, Jiangfan & Wang, Yufan & Zhou, Chaobin, 2025. "Deep learning model-based real-time state-of-health estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 317(C).
    11. Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
    12. Chen, Junxiong & Hu, Yuanjiang & Zhu, Qiao & Rashid, Haroon & Li, Hongkun, 2023. "A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging," Energy, Elsevier, vol. 282(C).
    13. Xiong, Xin & Wang, Yujie & Jiang, Cong & Zhang, Xingchen & Xiang, Haoxiang & Chen, Zonghai, 2024. "End-to-end deep learning powered battery state of health estimation considering multi-neighboring incomplete charging data," Energy, Elsevier, vol. 292(C).
    14. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2024. "An adaptive and interpretable SOH estimation method for lithium-ion batteries based-on relaxation voltage cross-scale features and multi-LSTM-RFR2," Energy, Elsevier, vol. 304(C).
    15. Lin, Mingqiang & Ke, Leisi & Meng, Jinhao & Wang, Wei & Wu, Ji & Wang, Fengxiang, 2025. "Health status estimation of Lithium-ion battery under arbitrary charging voltage information using ensemble learning framework," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    16. Li, Fang & Min, Yongjun & Zhang, Ying & Zhang, Yong & Zuo, Hongfu & Bai, Fang, 2024. "State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    18. Peng, Simin & Wang, Yujian & Tang, Aihua & Jiang, Yuxia & Kan, Jiarong & Pecht, Michael, 2025. "State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries," Energy, Elsevier, vol. 315(C).
    19. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
    20. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.