IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics0306261923012527.html
   My bibliography  Save this article

Effect of cell-to-cell variation and module configuration on the performance of lithium-ion battery systems

Author

Listed:
  • Kim, Kyunghyun
  • Choi, Jung-Il

Abstract

The performance of lithium-ion battery modules significantly depends on cell-to-cell variations and connection topology. In particular, inhomogeneous distribution across the parallel battery module results in performance degradation and potential safety problems. This study evaluates the overall performance of battery modules, including parallel-connected cell groups with different system terminal positions, and examines the effect of cross-connectors. First, a battery module model with electrochemical, thermal, and aging properties is introduced. An LMN structure that allows all battery module structures was proposed for the first time. Next, modules with different topologies are simulated to analyze the cell-to-cell variations in terms of current, temperature, and aging. Finally, six performance indices are extracted from the simulation results to represent the module performance. The module with the cross-contacting system terminal reduces the effect of the connection resistance on the cell-to-cell variation, showing clear improvement over other topologies of up to 61.5%. Additionally, the use of cross-connectors reduces inconsistencies between cells and improves the safety of the battery modules in the event of potential problems. The number of cycles increases by over four times compared with the general case and no significant overdischarge state is observed in a particular cell. The proposed method can be used to solve system-level problems and assist engineers in designing battery management systems to provide longer-lasting and more efficient energy storage systems.

Suggested Citation

  • Kim, Kyunghyun & Choi, Jung-Il, 2023. "Effect of cell-to-cell variation and module configuration on the performance of lithium-ion battery systems," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923012527
    DOI: 10.1016/j.apenergy.2023.121888
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rothgang, Susanne & Baumhöfer, Thorsten & van Hoek, Hauke & Lange, Tobias & De Doncker, Rik W. & Sauer, Dirk Uwe, 2015. "Modular battery design for reliable, flexible and multi-technology energy storage systems," Applied Energy, Elsevier, vol. 137(C), pages 931-937.
    2. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    3. Majid Astaneh & Jelena Andric & Lennart Löfdahl & Dario Maggiolo & Peter Stopp & Mazyar Moghaddam & Michel Chapuis & Henrik Ström, 2020. "Calibration Optimization Methodology for Lithium-Ion Battery Pack Model for Electric Vehicles in Mining Applications," Energies, MDPI, vol. 13(14), pages 1-27, July.
    4. Comello, Stephen & Glenk, Gunther & Reichelstein, Stefan, 2021. "Transitioning to clean energy transportation services: Life-cycle cost analysis for vehicle fleets," Applied Energy, Elsevier, vol. 285(C).
    5. Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "Influence of connecting plate resistance upon LiFePO4 battery performance," Applied Energy, Elsevier, vol. 147(C), pages 353-360.
    6. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    7. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    8. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    2. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    3. Chang, Long & Ma, Chen & Zhang, Chenghui & Duan, Bin & Cui, Naxin & Li, Changlong, 2023. "Correlations of lithium-ion battery parameter variations and connected configurations on pack statistics," Applied Energy, Elsevier, vol. 329(C).
    4. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    5. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    6. Anne Christine Lusk & Xin Li & Qiming Liu, 2023. "If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    7. Roman Gozdur & Tomasz Przerywacz & Dariusz Bogdański, 2021. "Low Power Modular Battery Management System with a Wireless Communication Interface," Energies, MDPI, vol. 14(19), pages 1-20, October.
    8. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    9. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    10. Lalan K. Singh & Anoop K. Gupta, 2023. "Hybrid cooling-based lithium-ion battery thermal management for electric vehicles," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3627-3648, April.
    11. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    12. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    13. Chen, Kai & Song, Mengxuan & Wei, Wei & Wang, Shuangfeng, 2018. "Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement," Energy, Elsevier, vol. 145(C), pages 603-613.
    14. Chuanwei Zhang & Zhan Xia & Huaibin Gao & Jianping Wen & Shangrui Chen & Meng Dang & Sujing Gu & Jianing Zhang, 2020. "A Coolant Circulation Cooling System Combining Aluminum Plates and Copper Rods for Li-Ion Battery Pack," Energies, MDPI, vol. 13(17), pages 1-14, August.
    15. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
    16. Ma, Chen & Chang, Long & Cui, Naxin & Duan, Bin & Zhang, Yulong & Yu, Zhihao, 2022. "Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization," Energy, Elsevier, vol. 257(C).
    17. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    18. Chengning Zhang & Xin Jin & Junqiu Li, 2017. "PTC Self-Heating Experiments and Thermal Modeling of Lithium-Ion Battery Pack in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-21, April.
    19. Yuxiang Yang & Mingyu Gao & Zhiwei He & Caisheng Wang, 2017. "A Robust Battery Grouping Method Based on a Characteristic Distribution Model," Energies, MDPI, vol. 10(7), pages 1-14, July.
    20. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923012527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.