IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224010855.html
   My bibliography  Save this article

Application and evaluation of the evolutionary algorithms combined with conventional neural network to determine the building energy consumption of the residential sector

Author

Listed:
  • Wang, Guimei
  • Mukhtar, Azfarizal
  • Moayedi, Hossein
  • Khalilpoor, Nima
  • Tt, Quynh

Abstract

Residential uses a significant amount of energy; hence, encouraging sustainability and lessening environmental effects requires minimizing energy consumption in this sector. This study focuses on applying and evaluating evolutionary algorithms combined with conventional neural networks to predict building energy consumption in the residential sector. The primary objectives were to assess the performance of three evolutionary algorithms – Heap-Based Optimizer (HBO), Multiverse Optimizer (MVO), and Whale Optimization Algorithm (WOA) – in comparison to each other and to determine their effectiveness in predicting energy consumption. Each algorithm was integrated into the neural network framework to optimize the prediction model. Training and testing datasets were employed to evaluate the performance of the models. Two key statistical indices, Root Mean Square Error (RMSE) and R-squared (R2), were utilized to assess the accuracy of the predictions. The results of the evaluation demonstrated varying performances among the three evolutionary algorithms. MVO achieved the highest scores for both RMSE (48.55082 in training and 68.44517 in testing) and R2 (0.99184 in training and 0.98236 in testing) on both training and testing datasets, indicating superior predictive accuracy compared to HBO and WOA. These findings underscore the importance of algorithm selection in optimizing predictive models for energy consumption forecasting. Further research may explore hybrid approaches or parameter tuning to enhance the performance of evolutionary algorithms in this domain. Overall, this study contributes to advancing energy forecasting techniques, with potential implications for energy management and conservation efforts in the residential sector.

Suggested Citation

  • Wang, Guimei & Mukhtar, Azfarizal & Moayedi, Hossein & Khalilpoor, Nima & Tt, Quynh, 2024. "Application and evaluation of the evolutionary algorithms combined with conventional neural network to determine the building energy consumption of the residential sector," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010855
    DOI: 10.1016/j.energy.2024.131312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.