IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005735.html
   My bibliography  Save this article

Best estimate plus uncertainty methodology for forecasting electrical balances in isolated grids: The decarbonized Canary Islands by 2040

Author

Listed:
  • Berna-Escriche, César
  • Rivera, Yago
  • Alvarez-Piñeiro, Lucas
  • Muñoz-Cobo, José Luis

Abstract

This paper investigates the challenges isolated islands face in transitioning from fossil fuel-based electricity generation to renewable energy sources. The Canary Islands serve as a case study, where photovoltaic and wind power are the primary renewables, but their variability requires a deep techno-economic analysis. The island's energy demand is predicted to rise by 100% due to economic growth, electrification and electric vehicles. However, implementing renewable systems encounters obstacles, such as limited suitable sites and protected areas. The study uses Wilks' methodology and Monte Carlo sampling to explore 59 combinations of randomly selected inputs of the uncertain variables, aiming for a 95/95% coverage and confidence level in the results. In most cases, they experience energy shortages, failing to meet electric demand. Even though a new generation mix appears to cover demand under all circumstances, the uncertainty unveils a different reality, leading to an approximate 25% increase in system costs. Surpluses in energy generation, while seemingly positive, can pose challenges. The new system's Levelized Cost of Energy increases from around 14 to 17c€/kWh. These cost increases are contingent upon future performance and the variability of uncertain parameters, leading to excesses ranging from slightly below 25% to over 40%.

Suggested Citation

  • Berna-Escriche, César & Rivera, Yago & Alvarez-Piñeiro, Lucas & Muñoz-Cobo, José Luis, 2024. "Best estimate plus uncertainty methodology for forecasting electrical balances in isolated grids: The decarbonized Canary Islands by 2040," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005735
    DOI: 10.1016/j.energy.2024.130801
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segurado, Raquel & Krajacic, Goran & Duic, Neven & Alves, Luís, 2011. "Increasing the penetration of renewable energy resources in S. Vicente, Cape Verde," Applied Energy, Elsevier, vol. 88(2), pages 466-472, February.
    2. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "Multi-agent energy management of smart islands using primal-dual method of multipliers," Energy, Elsevier, vol. 208(C).
    3. Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam & Harijan, Khanji & Walasai, Gordhan Das & Mondal, Md Alam Hossain & Sahin, Hasret, 2018. "Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): A LEAP model application for policy analysis," Energy, Elsevier, vol. 165(PB), pages 512-526.
    4. Zhang, Fan & Meng, Lei & Sun, Wen & Si, Yanwu, 2021. "Information technology and the labor market in China," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 156-168.
    5. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    6. César Berna-Escriche & Ángel Pérez-Navarro & Alberto Escrivá & Elías Hurtado & José Luis Muñoz-Cobo & María Cristina Moros, 2021. "Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    7. Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Bonini, Matteo & Wen, John Z. & Nathwani, Jatin & Oliveti, Giuseppe, 2021. "Artificial intelligence application for the performance prediction of a clean energy community," Energy, Elsevier, vol. 232(C).
    8. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    9. Henriques, Sofia Teives & Borowiecki, Karol J., 2017. "The drivers of long-run CO2 emissions in Europe, North America and Japan since 1800," Energy Policy, Elsevier, vol. 101(C), pages 537-549.
    10. Mohamed Ahmed Salem & Khalil Md Nor, 2021. "A meta-analysis of continuous technology usage behaviour," International Journal of Business Continuity and Risk Management, Inderscience Enterprises Ltd, vol. 11(2/3), pages 172-193.
    11. Prina, Matteo Giacomo & Cozzini, Marco & Garegnani, Giulia & Manzolini, Giampaolo & Moser, David & Filippi Oberegger, Ulrich & Pernetti, Roberta & Vaccaro, Roberto & Sparber, Wolfram, 2018. "Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model," Energy, Elsevier, vol. 149(C), pages 213-221.
    12. César Berna-Escriche & Carlos Vargas-Salgado & David Alfonso-Solar & Alberto Escrivá-Castells, 2022. "Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    13. Mike Brian Ndawula & Sasa Z. Djokic & Ignacio Hernando-Gil, 2019. "Reliability Enhancement in Power Networks under Uncertainty from Distributed Energy Resources," Energies, MDPI, vol. 12(3), pages 1-24, February.
    14. Sanghyun Hong & Barry W. Brook, 2018. "Economic Feasibility of Energy Supply by Small Modular Nuclear Reactors on Small Islands: Case Studies of Jeju, Tasmania and Tenerife," Energies, MDPI, vol. 11(10), pages 1-11, September.
    15. Qiblawey, Yazan & Alassi, Abdulrahman & Zain ul Abideen, Mohammed & Bañales, Santiago, 2022. "Techno-economic assessment of increasing the renewable energy supply in the Canary Islands: The case of Tenerife and Gran Canaria," Energy Policy, Elsevier, vol. 162(C).
    16. Zhao, Weigang & Cao, Yunfei & Miao, Bo & Wang, Ke & Wei, Yi-Ming, 2018. "Impacts of shifting China's final energy consumption to electricity on CO2 emission reduction," Energy Economics, Elsevier, vol. 71(C), pages 359-369.
    17. Itf, 2021. "Cleaner Vehicles: Achieving a Resilient Technology Transition," International Transport Forum Policy Papers 90, OECD Publishing.
    18. Carlos Vargas-Salgado & César Berna-Escriche & Alberto Escrivá-Castells & Dácil Díaz-Bello, 2022. "Optimization of All-Renewable Generation Mix According to Different Demand Response Scenarios to Cover All the Electricity Demand Forecast by 2040: The Case of the Grand Canary Island," Sustainability, MDPI, vol. 14(3), pages 1-29, February.
    19. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    21. Weigang Zhao & Yunfei Cao & Bo Miao & Ke Wang & Yi-Ming Wei, 2018. "Impacts of shifting China¡¯s final energy consumption to electricity on CO2 emission reduction," CEEP-BIT Working Papers 115, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Bo & Lee, Henry & Shi, Yiwei & Wang, Zheng, 2024. "Integrating solar electricity into a fossil fueled system," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Berna-Escriche & Ángel Pérez-Navarro & Alberto Escrivá & Elías Hurtado & José Luis Muñoz-Cobo & María Cristina Moros, 2021. "Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    4. El-Sayed, Ahmed Hassan A. & Khalil, Adel & Yehia, Mohamed, 2023. "Modeling alternative scenarios for Egypt 2050 energy mix based on LEAP analysis," Energy, Elsevier, vol. 266(C).
    5. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).
    7. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    8. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    10. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
    11. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    12. Dong, Qichen & Lin, Yongyi & Huang, Jieyu & Chen, Zhongfei, 2020. "Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data," China Economic Review, Elsevier, vol. 59(C).
    13. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.
    14. Anna Flessa & Dimitris Fragkiadakis & Eleftheria Zisarou & Panagiotis Fragkos, 2023. "Developing an Integrated Energy–Economy Model Framework for Islands," Energies, MDPI, vol. 16(3), pages 1-32, January.
    15. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    16. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    17. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    20. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.