IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics0360544220314134.html
   My bibliography  Save this article

Multi-agent energy management of smart islands using primal-dual method of multipliers

Author

Listed:
  • Mohamed, Mohamed A.
  • Jin, Tao
  • Su, Wencong

Abstract

This paper basically concentrates on providing an appropriate distributed-based energy management framework in smart islands. Smart island is defined as insular territory with the ability to implement integrated solutions to the management of infrastructures and natural resources. The distributed optimization is accomplished by using primal-dual method of multipliers which has shown more promising performance in terms of execution time and convergence rate compared to the alternating-direction method of multipliers. The proposed energy management scheme is carried out between 5 different agents including an energy hub, a networked multi-microgrid with 3 agents and a transportation system. The transportation system comprises of the subway system and plug-in electric vehicles. The proposed networked multi-microgrid is made up of 3 microgrid systems, each one comprises of wind generation units, photovoltaic units and a tidal unit. Despite the assumption that the agents are both suppliers and consumers of energy and are completely operated and separated from the other sections, they share energy through a peer-to-peer energy trading. Such sharing scheme will be ended up by obtaining an equilibrium point through which a consensus is reached and all the parties are satisfied. Results prove the validity of the proposed approach in providing a proper energy negotiation framework in a smart island in terms of accuracy and applicability.

Suggested Citation

  • Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "Multi-agent energy management of smart islands using primal-dual method of multipliers," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220314134
    DOI: 10.1016/j.energy.2020.118306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220314134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
    2. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    3. Hiremath, R.B. & Shikha, S. & Ravindranath, N.H., 2007. "Decentralized energy planning; modeling and application--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 729-752, June.
    4. Mohamed, Mohamed A. & Tajik, Elham & Awwad, Emad Mahrous & El-Sherbeeny, Ahmed M. & Elmeligy, Mohammed A. & Ali, Ziad M., 2020. "A two-stage stochastic framework for effective management of multiple energy carriers," Energy, Elsevier, vol. 197(C).
    5. Yongjie Zhong & Dongliang Xie & Suwei Zhai & Yonghui Sun, 2018. "Day-Ahead Hierarchical Steady State Optimal Operation for Integrated Energy System Based on Energy Hub," Energies, MDPI, vol. 11(10), pages 1-18, October.
    6. Roustaei, M. & Niknam, T. & Salari, S. & Chabok, H. & Sheikh, M. & Kavousi-Fard, A. & Aghaei, J., 2020. "A scenario-based approach for the design of Smart Energy and Water Hub," Energy, Elsevier, vol. 195(C).
    7. Ayele, Getnet Tadesse & Haurant, Pierrick & Laumert, Björn & Lacarrière, Bruno, 2018. "An extended energy hub approach for load flow analysis of highly coupled district energy networks: Illustration with electricity and heating," Applied Energy, Elsevier, vol. 212(C), pages 850-867.
    8. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "An effective stochastic framework for smart coordinated operation of wind park and energy storage unit," Applied Energy, Elsevier, vol. 272(C).
    9. Chabok, Hossein & Roustaei, Mahmoud & Sheikh, Morteza & Kavousi-Fard, Abdollah, 2020. "On the assessment of the impact of a price-maker energy storage unit on the operation of power system: The ISO point of view," Energy, Elsevier, vol. 190(C).
    10. Tabatabaee, Sajad & Mortazavi, Seyed Saeedallah & Niknam, Taher, 2017. "Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources," Energy, Elsevier, vol. 121(C), pages 480-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, S. & Maulik, A. & Das, D. & Singh, A., 2022. "Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    3. Mohamed A. Mohamed & Seyedali Mirjalili & Udaya Dampage & Saleh H. Salmen & Sami Al Obaid & Andres Annuk, 2021. "A Cost-Efficient-Based Cooperative Allocation of Mining Devices and Renewable Resources Enhancing Blockchain Architecture," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    4. Ruiqiu Yao & Yukun Hu & Liz Varga, 2023. "Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review," Energies, MDPI, vol. 16(5), pages 1-36, March.
    5. Tianze Lan & Kittisak Jermsittiparsert & Sara T. Alrashood & Mostafa Rezaei & Loiy Al-Ghussain & Mohamed A. Mohamed, 2021. "An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand," Energies, MDPI, vol. 14(3), pages 1-25, January.
    6. Dan Zhou & Xiaodie Niu & Yuzhe Xie & Peng Li & Jiandi Fang & Fanghong Guo, 2022. "An Economic Dispatch Method of Microgrid Based on Fully Distributed ADMM Considering Demand Response," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    7. Pinto, Giuseppe & Kathirgamanathan, Anjukan & Mangina, Eleni & Finn, Donal P. & Capozzoli, Alfonso, 2022. "Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures," Applied Energy, Elsevier, vol. 310(C).
    8. Li, Sichen & Hu, Weihao & Cao, Di & Chen, Zhe & Huang, Qi & Blaabjerg, Frede & Liao, Kaiji, 2023. "Physics-model-free heat-electricity energy management of multiple microgrids based on surrogate model-enabled multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 346(C).
    9. Yu, Vincent F. & Le, Thi Huynh Anh & Gupta, Jatinder N.D., 2022. "Sustainable microgrid design with multiple demand areas and peer-to-peer energy trading involving seasonal factors and uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Deng, Xinchen & Wang, Feng & Lin, Xianke & Hu, Bing & Arash, Khalatbarisoltan & Hu, Xiaosong, 2022. "Distributed energy management of home-vehicle Nexus with Stationary battery energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Hussain, Sadam & Azim, M. Imran & Lai, Chunyan & Eicker, Ursula, 2023. "New coordination framework for smart home peer-to-peer trading to reduce impact on distribution transformer," Energy, Elsevier, vol. 284(C).
    13. Khalid Alnowibet & Andres Annuk & Udaya Dampage & Mohamed A. Mohamed, 2021. "Effective Energy Management via False Data Detection Scheme for the Interconnected Smart Energy Hub–Microgrid System under Stochastic Framework," Sustainability, MDPI, vol. 13(21), pages 1-32, October.
    14. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "An effective stochastic framework for smart coordinated operation of wind park and energy storage unit," Applied Energy, Elsevier, vol. 272(C).
    2. Chabok, Hossein & Aghaei, Jamshid & Sheikh, Morteza & Roustaei, Mahmoud & Zare, Mohsen & Niknam, Taher & Lehtonen, Matti & Shafi-khah, Miadreza & Catalão, João P.S., 2022. "Transmission-constrained optimal allocation of price-maker wind-storage units in electricity markets," Applied Energy, Elsevier, vol. 310(C).
    3. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Tianze Lan & Kittisak Jermsittiparsert & Sara T. Alrashood & Mostafa Rezaei & Loiy Al-Ghussain & Mohamed A. Mohamed, 2021. "An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand," Energies, MDPI, vol. 14(3), pages 1-25, January.
    5. Yongjie Zhong & Hongwei Zhou & Xuanjun Zong & Zhou Xu & Yonghui Sun, 2019. "Hierarchical Multi-Objective Fuzzy Collaborative Optimization of Integrated Energy System under Off-Design Performance," Energies, MDPI, vol. 12(5), pages 1-27, March.
    6. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "A robust dispatch model for integrated electricity and heat networks considering price-based integrated demand response," Energy, Elsevier, vol. 239(PA).
    7. Tan, Hong & Li, Zhenxing & Wang, Qiujie & Mohamed, Mohamed A., 2023. "A novel forecast scenario-based robust energy management method for integrated rural energy systems with greenhouses," Applied Energy, Elsevier, vol. 330(PB).
    8. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Wang, Xin & Luo, Yingbing & Qin, Bin & Guo, Lingzhong, 2022. "Power dynamic allocation strategy for urban rail hybrid energy storage system based on iterative learning control," Energy, Elsevier, vol. 245(C).
    10. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    11. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    12. Gao, Yang & Ai, Qian & He, Xing & Fan, Songli, 2023. "Coordination for regional integrated energy system through target cascade optimization," Energy, Elsevier, vol. 276(C).
    13. Sun, Mingyi & Zhao, Xia & Tan, Hong & Li, Xinyi, 2022. "Coordinated operation of the integrated electricity-water distribution system and water-cooled 5G base stations," Energy, Elsevier, vol. 238(PC).
    14. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    15. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2017. "A goal programming based model system for community energy plan," Energy, Elsevier, vol. 134(C), pages 893-901.
    16. Liu, Zhen & Shi, Yuren & Yan, Jianming & Ou, Xunmin & Lieu, Jenny, 2012. "Research on the decomposition model for China’s National Renewable Energy total target," Energy Policy, Elsevier, vol. 51(C), pages 110-120.
    17. Batas Bjelic, Ilija & Ciric, Rade M., 2014. "Optimal distributed generation planning at a local level – A review of Serbian renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 79-86.
    18. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    19. Ramachandra, T.V., 2009. "RIEP: Regional integrated energy plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 285-317, February.
    20. Levin, Todd & Thomas, Valerie M., 2012. "Least-cost network evaluation of centralized and decentralized contributions to global electrification," Energy Policy, Elsevier, vol. 41(C), pages 286-302.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220314134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.