IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544223000865.html
   My bibliography  Save this article

CO2 emission reduction effect of photovoltaic industry through 2060 in China

Author

Listed:
  • Guo, Xiaopeng
  • Dong, Yining
  • Ren, Dongfang

Abstract

In the coming four-decade, China will face serious challenge while shifting to carbon neutral. Photovoltaic (PV) power, as one of the most promising clean energies, is seen as an important focus for decarbonization of the power sector in China. The novelty of this study is to use life cycle assessment (LCA) methods to analyze the CO2 emission reduction of the PV generation industry before 2060 base on the amount of energy and resources consumed and PV generation's CO2 reduction benefits during the whole industrial chain. This paper aims to examine CO2 emission reduction contribution, we firstly compute the historical emissions and predict future PV waste and new power capacity from 2010 to 2060. Then, considering the change of industrial structure and technological evolution, the yearly life cycle CO2 emission from producing stage to recycling stage is calculated. The key results show that the unit CO2 emission of PV system producing will reduce 88.07% from 2010 to 2060. PV generation industry's total CO2 emission has reached its neutrality between 2014 and 2015, and will reduce 33.03 Giga tons CO2-eq till 2060. The findings can offer relevant insights to low-carbon development of China's PV industry and will provide suggestions for policy-making.

Suggested Citation

  • Guo, Xiaopeng & Dong, Yining & Ren, Dongfang, 2023. "CO2 emission reduction effect of photovoltaic industry through 2060 in China," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223000865
    DOI: 10.1016/j.energy.2023.126692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atse Louwen & Wilfried G. J. H. M. van Sark & André P. C. Faaij & Ruud E. I. Schropp, 2016. "Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    2. Koo, Choongwan & Si, Ke & Li, Wenzhuo & Lee, JeeHee, 2022. "Integrated approach to evaluating the impact of feed-in tariffs on the life cycle economic performance of photovoltaic systems in China: A case study of educational facilities," Energy, Elsevier, vol. 254(PB).
    3. Song, Dongdong & Jiao, Hongtao & Fan, Chien Te, 2015. "Overview of the photovoltaic technology status and perspective in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 848-856.
    4. Ganesan, Kishore & Valderrama, César, 2022. "Anticipatory life cycle analysis framework for sustainable management of end-of-life crystalline silicon photovoltaic panels," Energy, Elsevier, vol. 245(C).
    5. Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
    6. Ren, Fang-rong & Tian, Ze & Liu, Jingjing & Shen, Yu-ting, 2020. "Analysis of CO2 emission reduction contribution and efficiency of China’s solar photovoltaic industry: Based on Input-output perspective," Energy, Elsevier, vol. 199(C).
    7. Deng, Rong & Chang, Nathan L. & Ouyang, Zi & Chong, Chee Mun, 2019. "A techno-economic review of silicon photovoltaic module recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 532-550.
    8. Resalati, Shahaboddin & Okoroafor, Tobechi & Maalouf, Amani & Saucedo, Edgardo & Placidi, Marcel, 2022. "Life cycle assessment of different chalcogenide thin-film solar cells," Applied Energy, Elsevier, vol. 313(C).
    9. Zhou, Dequn & Chong, Zhaotian & Wang, Qunwei, 2020. "What is the future policy for photovoltaic power applications in China? Lessons from the past," Resources Policy, Elsevier, vol. 65(C).
    10. Yu, Zhiqiang & Ma, Wenhui & Xie, Keqiang & Lv, Guoqiang & Chen, Zhengjie & Wu, Jijun & Yu, Jie, 2017. "Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China," Applied Energy, Elsevier, vol. 185(P1), pages 68-81.
    11. Liu, Feng & van den Bergh, Jeroen C.J.M., 2020. "Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA," Energy Policy, Elsevier, vol. 138(C).
    12. Wiryadinata, Steven & Morejohn, Josh & Kornbluth, Kurt, 2019. "Pathways to carbon neutral energy systems at the University of California, Davis," Renewable Energy, Elsevier, vol. 130(C), pages 853-866.
    13. Li, Zihao & Zhang, Wei & He, Bo & Xie, Lingzhi & Chen, Mo & Li, Jianhui & Zhao, Oufan & Wu, Xin, 2022. "A comprehensive life cycle assessment study of innovative bifacial photovoltaic applied on building," Energy, Elsevier, vol. 245(C).
    14. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    15. Mehedi, Tanveer Hassan & Gemechu, Eskinder & Kumar, Amit, 2022. "Life cycle greenhouse gas emissions and energy footprints of utility-scale solar energy systems," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanhua Deng & Jiji Wu & Qian Yang & Weizhen Chen & Penghan Li & Chenhao Huang & Jinsong Deng & Biyong Ji & Lijian Xie, 2023. "Life Cycle-Based Carbon Emission Reduction Benefit Assessment of Centralized Photovoltaic Power Plants in China," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    2. Yu, Hongyang & Wang, Jinchao & Xu, Jiajun, 2023. "Assessing the role of digital economy agglomeration in energy conservation and emission reduction: Evidence from China," Energy, Elsevier, vol. 284(C).
    3. Rong Wang & Sandra Hasanefendic & Elizabeth Von Hauff & Bart Bossink, 2023. "A System Dynamics Approach to Technological Learning Impact for the Cost Estimation of Solar Photovoltaics," Energies, MDPI, vol. 16(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    2. Zhang, Tiantian & Nakagawa, Kei & Matsumoto, Ken'ichi, 2023. "Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis," Applied Energy, Elsevier, vol. 335(C).
    3. Patrick Moriarty & Damon Honnery, 2020. "Feasibility of a 100% Global Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-16, October.
    4. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    5. Dongdong Song & Haitian Pei & Yuewen Liu & Haiyong Wei & Shengfu Yang & Shougeng Hu, 2022. "Review on Legislative System of Photovoltaic Industry Development in China," Energies, MDPI, vol. 15(1), pages 1-15, January.
    6. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    7. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    8. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    9. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    10. Dawei Feng & Wenchao Xu & Xinyu Gao & Yun Yang & Shirui Feng & Xiaohu Yang & Hailong Li, 2023. "Carbon Emission Prediction and the Reduction Pathway in Industrial Parks: A Scenario Analysis Based on the Integration of the LEAP Model with LMDI Decomposition," Energies, MDPI, vol. 16(21), pages 1-15, October.
    11. Haicheng Jia & Ling Liang & Jiqing Xie & Jianyun Zhang, 2022. "Environmental Effects of Technological Improvements in Polysilicon Photovoltaic Systems in China—A Life Cycle Assessment," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    12. Gemina Quest & Rosalie Arendt & Christian Klemm & Vanessa Bach & Janik Budde & Peter Vennemann & Matthias Finkbeiner, 2022. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany," Energies, MDPI, vol. 15(16), pages 1-21, August.
    13. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    14. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    15. Xinyu Zhang & Mufei Shen & Yupeng Luan & Weijia Cui & Xueqin Lin, 2022. "Spatial Evolutionary Characteristics and Influencing Factors of Urban Industrial Carbon Emission in China," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    16. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    17. Salim, H.K. & Stewart, R.A. & Sahin, O. & Dudley, M., 2020. "Systems approach to end-of-life management of residential photovoltaic panels and battery energy storage system in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    19. Omar Hazil & Fouad Allouani & Sofiane Bououden & Mohammed Chadli & Mohamed Chemachema & Ilyes Boulkaibet & Bilel Neji, 2023. "A Robust Model Predictive Control for a Photovoltaic Pumping System Subject to Actuator Saturation Nonlinearity," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    20. Johnson, Joji & Manikandan, S., 2023. "Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223000865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.