IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v258y2022ics0360544222017078.html
   My bibliography  Save this article

Analysis of public acceptance of electric vehicle charging scheduling based on the technology acceptance model

Author

Listed:
  • Wang, Ning
  • Tian, Hangqi
  • Zhu, Shunbo
  • Li, Yuan

Abstract

As a form of vehicle-grid integration technology, electric vehicle charging scheduling (EVCS) brings benefits to the operation of power grids and the consumption of renewable energies. Exploring users’ acceptance of EVCS helps to understand the formation mechanisms of acceptance and improve user adoption. Based on 426 questionnaires from Hangzhou, China, technology acceptance model and mean difference test were applied in this paper to explore the impact factors of willingness to accept and the differences in EVCS acceptance among groups with different social attributes. Results showed that 81.2% of the respondents were willing to participate in EVCS and were more inclined to accept charging time scheduling compared to charging location scheduling. Perceived risk had a significantly direct and negative effect on user acceptance, while initial trust, social value, and social influence had a significantly indirect and positive effect. There were no statistically significant differences in the acceptance of EVCS between males and females, or among groups with different education and income levels, with the married group and the 31–40 age group being more willing to accept than the unmarried group and the 18–30 age group respectively. Finally, the results were discussed and recommendations were presented accordingly.

Suggested Citation

  • Wang, Ning & Tian, Hangqi & Zhu, Shunbo & Li, Yuan, 2022. "Analysis of public acceptance of electric vehicle charging scheduling based on the technology acceptance model," Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017078
    DOI: 10.1016/j.energy.2022.124804
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222017078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    2. Weis, Allison & Jaramillo, Paulina & Michalek, Jeremy, 2014. "Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric power systems with high wind penetration," Applied Energy, Elsevier, vol. 115(C), pages 190-204.
    3. Fernandes, Camila & Frías, Pablo & Latorre, Jesús M., 2012. "Impact of vehicle-to-grid on power system operation costs: The Spanish case study," Applied Energy, Elsevier, vol. 96(C), pages 194-202.
    4. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    5. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Tran, Martino & Banister, David & McCulloch, Malcolm D., 2013. "Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV," Applied Energy, Elsevier, vol. 111(C), pages 206-218.
    6. Curtale, Riccardo & Liao, Feixiong & van der Waerden, Peter, 2021. "User acceptance of electric car-sharing services: The case of the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 266-282.
    7. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    8. Tarroja, Brian & Hittinger, Eric, 2021. "The value of consumer acceptance of controlled electric vehicle charging in a decarbonizing grid: The case of California," Energy, Elsevier, vol. 229(C).
    9. Wei, Hongqian & Zhang, Youtong & Wang, Yongzhen & Hua, Weiqi & Jing, Rui & Zhou, Yue, 2022. "Planning integrated energy systems coupling V2G as a flexible storage," Energy, Elsevier, vol. 239(PB).
    10. Khardenavis, Amaiya & Hewage, Kasun & Perera, Piyaruwan & Shotorbani, Amin Mohammadpour & Sadiq, Rehan, 2021. "Mobile energy hub planning for complex urban networks: A robust optimization approach," Energy, Elsevier, vol. 235(C).
    11. Bailey, Joseph & Axsen, Jonn, 2015. "Anticipating PEV buyers’ acceptance of utility controlled charging," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 29-46.
    12. Hidrue, Michael K. & Parsons, George R., 2015. "Is there a near-term market for vehicle-to-grid electric vehicles?," Applied Energy, Elsevier, vol. 151(C), pages 67-76.
    13. Wang, Ning & Tang, Linhao & Pan, Huizhong, 2018. "Analysis of public acceptance of electric vehicles: An empirical study in Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 284-291.
    14. Chen, Shang-Yu, 2016. "Using the sustainable modified TAM and TPB to analyze the effects of perceived green value on loyalty to a public bike system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 58-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    2. Cudjoe, Dan & Zhu, Bangzhu & Wang, Hong, 2024. "The role of incentive policies and personal innovativeness in consumers' carbon footprint tracking apps adoption in China," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    3. Sheng, Yujie & Zeng, Hongtai & Guo, Qinglai & Yu, Yang & Li, Qiang, 2023. "Impact of customer portrait information superiority on competitive pricing of EV fast-charging stations," Applied Energy, Elsevier, vol. 348(C).
    4. Sprei, Frances & Kempton, Willett, 2024. "Mental models guide electric vehicle charging," Energy, Elsevier, vol. 292(C).
    5. Ion Popa & Marian Mihai Cioc & Stefan Catalin Pop & Daniel Botez & Marius-Ioan Pantea, 2023. "Aligning Public Policy with REPowerEU Program Objectives by Adopting EESS Solutions: A Technology Acceptance Model Approach," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 660-660, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baudier, Patricia & Ammi, Chantal & Deboeuf-Rouchon, Matthieu, 2020. "Smart home: Highly-educated students' acceptance," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    2. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    3. Lagomarsino, Maria & van der Kam, Mart & Parra, David & Hahnel, Ulf J.J., 2022. "Do I need to charge right now? Tailored choice architecture design can increase preferences for electric vehicle smart charging," Energy Policy, Elsevier, vol. 162(C).
    4. Hoogvliet, T.W. & Litjens, G.B.M.A. & van Sark, W.G.J.H.M., 2017. "Provision of regulating- and reserve power by electric vehicle owners in the Dutch market," Applied Energy, Elsevier, vol. 190(C), pages 1008-1019.
    5. Borhan, Muhamad Nazri & Ibrahim, Ahmad Nazrul Hakimi & Miskeen, Manssour A. Abdulasalm, 2019. "Extending the theory of planned behaviour to predict the intention to take the new high-speed rail for intercity travel in Libya: Assessment of the influence of novelty seeking, trust and external inf," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 373-384.
    6. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    7. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Grimm, Veronika & Kretschmer, Sandra & Mehl, Simon, 2020. "Green innovations: The organizational setup of pilot projects and its influence on consumer perceptions," Energy Policy, Elsevier, vol. 142(C).
    9. Mohammad Tipu Sultan & Farzana Sharmin & Alina Badulescu & Darie Gavrilut & Ke Xue, 2021. "Social Media-Based Content towards Image Formation: A New Approach to the Selection of Sustainable Destinations," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    10. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    11. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    12. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    13. Bailey, Joseph & Axsen, Jonn, 2015. "Anticipating PEV buyers’ acceptance of utility controlled charging," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 29-46.
    14. Schikofsky, Jan & Dannewald, Till & Kowald, Matthias, 2020. "Exploring motivational mechanisms behind the intention to adopt mobility as a service (MaaS): Insights from Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 296-312.
    15. O’Reilly, Ryan & Cohen, Jed & Reichl, Johannes, 2024. "Achievable load shifting potentials for the European residential sector from 2022–2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Fernandes, A. & Woudstra, T. & van Wijk, A. & Verhoef, L. & Aravind, P.V., 2016. "Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs," Applied Energy, Elsevier, vol. 173(C), pages 13-28.
    17. Huiping Huang & Ganlin Nan, 2023. "Factors Influencing Continuance Intention of Time-Sharing Cars," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    18. Sabakun Naher Shetu & Md. Muzahidul Islam & Sadia Islam Promi, 2022. "An Empirical Investigation of the Continued Usage Intention of Digital Wallets: The Moderating Role of Perceived Technological Innovativeness," Future Business Journal, Springer, vol. 8(1), pages 1-17, December.
    19. Hidrue, Michael K. & Parsons, George R., 2015. "Is there a near-term market for vehicle-to-grid electric vehicles?," Applied Energy, Elsevier, vol. 151(C), pages 67-76.
    20. Monica Alonso & Hortensia Amaris & Jean Gardy Germain & Juan Manuel Galan, 2014. "Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms," Energies, MDPI, vol. 7(4), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.