IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v128y2014icp82-92.html
   My bibliography  Save this article

An improved PSO-based charging strategy of electric vehicles in electrical distribution grid

Author

Listed:
  • Yang, Jun
  • He, Lifu
  • Fu, Siyao

Abstract

Driven by the desire to reduce environmental impacts and achieve energy independence, electric vehicles (EVs) are poised to receive mass acceptance from the general public. However, simultaneously connecting to electric distribution grid and charging with large number of EVs bring the necessity of optimizing the charging and discharging behaviors of EVs, due to the security and economy issue of the grid operation. To address this issue, we propose a novel EV charging model in this paper. The model concerns with following aspects, including optimal power flow (OPF), statistic characteristics of EVs, EV owners’ degree of satisfaction (DoS), and the power grid cost. An improved particle swarm optimization (PSO) algorithm is proposed for the model optimization. To evaluate our proposed optimal EV charging strategy, a 10-bus power distribution system simulation is performed for performance investigation. Simulation results show that the proposed strategy can reduce the operational cost of the power grid considerately, while meeting the EV owner’s driving requirement. Also, better performance on the global search capability and optimal result of the improved particle swarm optimization algorithm is verified.

Suggested Citation

  • Yang, Jun & He, Lifu & Fu, Siyao, 2014. "An improved PSO-based charging strategy of electric vehicles in electrical distribution grid," Applied Energy, Elsevier, vol. 128(C), pages 82-92.
  • Handle: RePEc:eee:appene:v:128:y:2014:i:c:p:82-92
    DOI: 10.1016/j.apenergy.2014.04.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914004000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    2. Weis, Allison & Jaramillo, Paulina & Michalek, Jeremy, 2014. "Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric power systems with high wind penetration," Applied Energy, Elsevier, vol. 115(C), pages 190-204.
    3. Fernandes, Camila & Frías, Pablo & Latorre, Jesús M., 2012. "Impact of vehicle-to-grid on power system operation costs: The Spanish case study," Applied Energy, Elsevier, vol. 96(C), pages 194-202.
    4. Bartolozzi, I. & Rizzi, F. & Frey, M., 2013. "Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy," Applied Energy, Elsevier, vol. 101(C), pages 103-111.
    5. Trovão, João P. & Pereirinha, Paulo G. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2013. "A multi-level energy management system for multi-source electric vehicles – An integrated rule-based meta-heuristic approach," Applied Energy, Elsevier, vol. 105(C), pages 304-318.
    6. Millo, Federico & Rolando, Luciano & Fuso, Rocco & Mallamo, Fabio, 2014. "Real CO2 emissions benefits and end user’s operating costs of a plug-in Hybrid Electric Vehicle," Applied Energy, Elsevier, vol. 114(C), pages 563-571.
    7. Brouwer, Anne Sjoerd & Kuramochi, Takeshi & van den Broek, Machteld & Faaij, André, 2013. "Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems," Applied Energy, Elsevier, vol. 107(C), pages 33-51.
    8. Han, Sekyung & Han, Soohee & Aki, Hirohisa, 2014. "A practical battery wear model for electric vehicle charging applications," Applied Energy, Elsevier, vol. 113(C), pages 1100-1108.
    9. Su, Wencong & Chow, Mo-Yuen, 2012. "Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck," Applied Energy, Elsevier, vol. 96(C), pages 171-182.
    10. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
    11. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    12. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    13. Khayyam, Hamid & Abawajy, Jemal & Javadi, Bahman & Goscinski, Andrzej & Stojcevski, Alex & Bab-Hadiashar, Alireza, 2013. "Intelligent battery energy management and control for vehicle-to-grid via cloud computing network," Applied Energy, Elsevier, vol. 111(C), pages 971-981.
    14. Saarenpää, Jukka & Kolehmainen, Mikko & Niska, Harri, 2013. "Geodemographic analysis and estimation of early plug-in hybrid electric vehicle adoption," Applied Energy, Elsevier, vol. 107(C), pages 456-464.
    15. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    16. Sorrentino, Marco & Rizzo, Gianfranco & Sorrentino, Luca, 2014. "A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions," Applied Energy, Elsevier, vol. 120(C), pages 31-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    2. Sorrentino, Marco & Rizzo, Gianfranco & Sorrentino, Luca, 2014. "A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions," Applied Energy, Elsevier, vol. 120(C), pages 31-40.
    3. De Gennaro, Michele & Paffumi, Elena & Scholz, Harald & Martini, Giorgio, 2014. "GIS-driven analysis of e-mobility in urban areas: An evaluation of the impact on the electric energy grid," Applied Energy, Elsevier, vol. 124(C), pages 94-116.
    4. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    5. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
    6. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
    7. Capasso, Clemente & Veneri, Ottorino, 2015. "Experimental study of a DC charging station for full electric and plug in hybrid vehicles," Applied Energy, Elsevier, vol. 152(C), pages 131-142.
    8. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    9. Salah, Florian & Ilg, Jens P. & Flath, Christoph M. & Basse, Hauke & Dinther, Clemens van, 2015. "Impact of electric vehicles on distribution substations: A Swiss case study," Applied Energy, Elsevier, vol. 137(C), pages 88-96.
    10. Xu, Zhiwei & Hu, Zechun & Song, Yonghua & Zhao, Wei & Zhang, Yongwang, 2014. "Coordination of PEVs charging across multiple aggregators," Applied Energy, Elsevier, vol. 136(C), pages 582-589.
    11. De Gennaro, Michele & Paffumi, Elena & Martini, Giorgio, 2015. "Customer-driven design of the recharge infrastructure and Vehicle-to-Grid in urban areas: A large-scale application for electric vehicles deployment," Energy, Elsevier, vol. 82(C), pages 294-311.
    12. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    13. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
    14. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    15. Bailey, Joseph & Axsen, Jonn, 2015. "Anticipating PEV buyers’ acceptance of utility controlled charging," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 29-46.
    16. Wang, Lu & Sharkh, Suleiman & Chipperfield, Andy, 2016. "Optimal coordination of vehicle-to-grid batteries and renewable generators in a distribution system," Energy, Elsevier, vol. 113(C), pages 1250-1264.
    17. Weis, Allison & Jaramillo, Paulina & Michalek, Jeremy, 2014. "Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric power systems with high wind penetration," Applied Energy, Elsevier, vol. 115(C), pages 190-204.
    18. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Jung, Hae Won & Baek, Changhyun & Kim, Yongchan, 2014. "Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles," Applied Energy, Elsevier, vol. 119(C), pages 1-9.
    19. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    20. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:128:y:2014:i:c:p:82-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.