IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220326037.html
   My bibliography  Save this article

A fast-heat battery system using the heat released from detonated supercooled phase change materials

Author

Listed:
  • Ling, Ziye
  • Luo, Mingyun
  • Song, Jiaqi
  • Zhang, Wenbo
  • Zhang, Zhengguo
  • Fang, Xiaoming

Abstract

A heating strategy has been developed for the battery operated at low temperature, which can intelligently control the thermal storage and release of an inorganic phase change material (PCM): CaCl2·6H2O - carboxymethyl cellulose (CMC). With the 0.5 wt % CMC content, this PCM (melts at 25–30 °C) becomes stable in the subcooled state, making it possible to be used as the subcooled liquid at 5 °C to store the heat generated by the battery. The thermal energy stored in the subcooled PCM can be detonated to release by triggering the PCM to crystalize with a special device. The instant crystallization of this subcooled PCM heats the battery rapidly-which is at a rate up to 7.5 °C/min, higher than the battery without PCM (0.8 °C/min) or the battery with the no subcooled PCM(0.4 °C/min). The discharge capacity and power can be improved by 9.87% and 7.56%. This work presents a new method of heating by switching the subcooling of PCM on/off, which extends the application of PCMs to battery heating under low temperatures. This energy-free but efficient method could provide a better alternative to most active heating systems.

Suggested Citation

  • Ling, Ziye & Luo, Mingyun & Song, Jiaqi & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming, 2021. "A fast-heat battery system using the heat released from detonated supercooled phase change materials," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326037
    DOI: 10.1016/j.energy.2020.119496
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220326037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    2. Ling, Ziye & Lin, Wenzhu & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Computationally efficient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment," Applied Energy, Elsevier, vol. 259(C).
    3. Yoon Hyuk Shin & Seung Ku Ahn & Sung Chul Kim, 2016. "Performance Characteristics of PTC Elements for an Electric Vehicle Heating System," Energies, MDPI, vol. 9(10), pages 1-9, October.
    4. Wang, Qingqing & Zhou, Dan & Chen, Yuming & Eames, Philip & Wu, Zhigen, 2020. "Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites," Renewable Energy, Elsevier, vol. 147(P1), pages 1131-1138.
    5. Sun, Wanchun & Huang, Rui & Ling, Ziye & Fang, Xiaoming & Zhang, Zhengguo, 2020. "Numerical simulation on the thermal performance of a PCM-containing ventilation system with a continuous change in inlet air temperature," Renewable Energy, Elsevier, vol. 145(C), pages 1608-1619.
    6. Chao-Yang Wang & Guangsheng Zhang & Shanhai Ge & Terrence Xu & Yan Ji & Xiao-Guang Yang & Yongjun Leng, 2016. "Lithium-ion battery structure that self-heats at low temperatures," Nature, Nature, vol. 529(7587), pages 515-518, January.
    7. Zhang, Xiongwen & Kong, Xin & Li, Guojun & Li, Jun, 2014. "Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions," Energy, Elsevier, vol. 64(C), pages 1092-1101.
    8. Dong, Kaixin & Sheng, Nan & Zou, Deqiu & Wang, Cheng & Shimono, Kenji & Akiyama, Tomohiro & Nomura, Takahiro, 2020. "A high-thermal-conductivity, high-durability phase-change composite using a carbon fibre sheet as a supporting matrix," Applied Energy, Elsevier, vol. 264(C).
    9. Qu, Y. & Wang, S. & Zhou, D. & Tian, Y., 2020. "Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives," Renewable Energy, Elsevier, vol. 146(C), pages 2637-2645.
    10. Ling, Ziye & Wen, Xiaoyan & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures," Energy, Elsevier, vol. 144(C), pages 977-983.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wencan & Huang, Liansheng & Zhang, Zhongbo & Li, Xingyao & Ma, Ruixin & Ren, Yimao & Wu, Weixiong, 2022. "Non-uniform phase change material strategy for directional mitigation of battery thermal runaway propagation," Renewable Energy, Elsevier, vol. 200(C), pages 1338-1351.
    2. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2022. "Self-powered heating strategy for lithium-ion battery pack applied in extremely cold climates," Energy, Elsevier, vol. 239(PB).
    3. Turunen, Konsta & Mikkola, Valtteri & Laukkanen, Timo & Seppälä, Ari, 2023. "Long-term thermal energy storage prototype of cold-crystallizing erythritol-polyelectrolyte," Applied Energy, Elsevier, vol. 332(C).
    4. Weng, Jingwen & Xiao, Changren & Ouyang, Dongxu & Yang, Xiaoqing & Chen, Mingyi & Zhang, Guoqing & Yuen, Richard Kwok Kit & Wang, Jian, 2022. "Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives," Energy, Elsevier, vol. 239(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Wang, Yujie & Zhang, Xingchen & Chen, Zonghai, 2022. "Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges," Applied Energy, Elsevier, vol. 313(C).
    5. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    6. Elsewify, O. & Souri, M. & Esfahani, M.N. & Hosseinzadeh, E. & Jabbari, M., 2021. "A new method for internal cooling of a large format lithium-ion battery pouch cell," Energy, Elsevier, vol. 225(C).
    7. Cao, Jiahao & He, Yangjing & Feng, Jinxin & Lin, Shao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge," Applied Energy, Elsevier, vol. 279(C).
    8. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    9. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Zhu, Tingting & Li, Yan, 2023. "Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array," Applied Energy, Elsevier, vol. 337(C).
    11. Qin, Yudi & Xu, Zhoucheng & Xiao, Shengran & Gao, Ming & Bai, Jian & Liebig, Dorothea & Lu, Languang & Han, Xuebing & Li, Yalun & Du, Jiuyu & Ouyang, Minggao, 2023. "Temperature consistency–oriented rapid heating strategy combining pulsed operation and external thermal management for lithium-ion batteries," Applied Energy, Elsevier, vol. 335(C).
    12. Cheng, Gong & Wang, Zhangzhou & Wang, Xinzhi & He, Yurong, 2022. "All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity," Applied Energy, Elsevier, vol. 322(C).
    13. Jianhao Gu & Jiajie Du & Yuxin Li & Jinpei Li & Longfei Chen & Yan Chai & Yongli Li, 2023. "Preparation and Characterization of n-Octadecane@SiO 2 /GO and n-Octadecane@SiO 2 /Ag Nanoencapsulated Phase Change Material for Immersion Cooling of Li-Ion Battery," Energies, MDPI, vol. 16(3), pages 1-16, February.
    14. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    15. Pang, Haidong & Yang, Zunxian & Lv, Jun & Yan, Wenhuan & Guo, Tailiang, 2014. "Novel MnOx@Carbon hybrid nanowires with core/shell architecture as highly reversible anode materials for lithium ion batteries," Energy, Elsevier, vol. 69(C), pages 392-398.
    16. Yang, Jufeng & Cai, Yingfeng & Mi, Chris, 2022. "Lithium-ion battery capacity estimation based on battery surface temperature change under constant-current charge scenario," Energy, Elsevier, vol. 241(C).
    17. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    18. Liu, Yongjie & Huang, Zhiwu & Wu, Yue & Yan, Lisen & Jiang, Fu & Peng, Jun, 2022. "An online hybrid estimation method for core temperature of Lithium-ion battery with model noise compensation," Applied Energy, Elsevier, vol. 327(C).
    19. Myeong Hyeon Park & Sung Chul Kim, 2017. "Heating Performance Characteristics of High-Voltage PTC Heater for an Electric Vehicle," Energies, MDPI, vol. 10(10), pages 1-14, September.
    20. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.